Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 6, pp 655–662 | Cite as

Size Distribution of Dry Matter of Particles in the Surface Atmospheric Layer in the Suburban Region of Tomsk within the Empirical Classification of Aerosol Weather Types

  • M. V. PanchenkoEmail author
  • V. V. Pol’kinEmail author
  • Vas. V. Pol’kinEmail author
  • V. S. KozlovEmail author
  • E. P. YaushevaEmail author
  • V. P. ShmargunovEmail author
ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • 3 Downloads

Abstract

Based on the integrated monitoring of aerosol characteristics in the suburban region of Tomsk (2000–2017), a version of the classification of states of the surface atmospheric layer with respect to “aerosol weather” types is suggested. The principle of separate study of the processes of variation in the “dry matter” of aerosol particles and their condensation activity is utilized as a basis of the measurement method used. The corresponding aerosol weather types were identified in the coordinates (σd; Р), where σd is the scattering coefficient of the dry matter of aerosol (λ = 0.51 μm); P is the ratio of the mass concentration of the absorbing substance to the mass concentration of submicron particles, which reflects the “blackening” degree of the particles. With respect to the value of the scattering coefficient σd = 100 Mm−1, the dataset is divided into two classes: “atmospheric hazes” (σd < 100 Mm−1) and “haze” (σd > 100 Mm−1). Then, the observation dataset is divided according to the value P = 0.05. In each calendar season, in accordance with the parameters specified, four types of aerosol weather are identified, which are conventionally designated as background (P < 0.05, σd < 100 Mm−1), haze-S (P > 0.05, σd < 100 Mm−1), smog (P > 0.05, σd > 100 Mm−1), and smoke haze (P < 0.05, σd > 100 Mm−1). It is shown that the main aerosol weather types are reliably different in the ratio of the contents of submicron and coarse particles in all seasons.

Keywords:

aerosol microstructure scattering coefficient halo soot submicron and coarse fractions “dry matter” of particles background haze smog smoke haze 

Notes

FUNDING

The multiyear studies were performed in the framework of the State Assignment (project no. АААА-А17-117021310142-5), and the first version of classification of states with respect to aerosol weather types in 2019 was developed under the support of the Russian Science Foundation (agreement no. 19-77-20 092).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    G. V. Rozenberg, “Light scattering in the Earth’s atmosphere,” Uspekhi Fiz. Nauk 71 (2), 173–213 (1960).CrossRefGoogle Scholar
  2. 2.
    Kh. Yunge, Chemical Composition and Radioactivity of the Atmosphere (Mir, Moscow, 1965) [in Russian].Google Scholar
  3. 3.
    G. V. Rozenberg and A. B. Sandomirskii, “Optical stratification of atmospheric aerosol,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 7 (7), 737–749 (1971).Google Scholar
  4. 4.
    K. Bullrich, “Scattering radiation in the atmosphere and the natural aerosol,” Adv. Geophys. 10, 99–260 (1964).ADSCrossRefGoogle Scholar
  5. 5.
    V. E. Zuev, Atmospheric Transparency for Visible and IR Radiation (Sov. radio, Moscow, 1966) [in Russian].Google Scholar
  6. 6.
    G. V. Rozenberg, “Optical study of atmospheric aerosol,” Uspekhi Fiz. Nauk 95 (1), 159–208 (1968).CrossRefGoogle Scholar
  7. 7.
    G. V. Rozenberg, “Properties of atmospheric aerosol according to data of optical studies,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 3 (9), 936–949 (1967).Google Scholar
  8. 8.
    Atmospheric Aerosol and Its Effect on Radiation Transfer, Ed. by K.Ya. Kondrat’ev (Gidrometeoizdat, Leningrad, 1978) [in Russian].Google Scholar
  9. 9.
    M. I. Budyko, G. S. Golitsyn, and Yu. A. Izrael’, Global Climate Catastrophes (Gidrometeoizdat, Moscow, 1986) [in Russian].Google Scholar
  10. 10.
    G. V. Rozenberg, “Origination and development of atmospheric aerosol—kinetically caused parameters,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 19 (1), 21–35 (1983).Google Scholar
  11. 11.
    Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Cambridge University Press, Cambridge, United Kingdom, New York, 2013).Google Scholar
  12. 12.
    R. S. Stone, S. Sharma, A. Herber, K. Eleftheriadis, and D. W. Nelson, “A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements,” Elem. Sci. Anth. 2, 27 (2014).CrossRefGoogle Scholar
  13. 13.
    A. A. Glazkova, I. N. Kuznetsova, I. Yu. Shalygina, and E. G. Semutnikova, “The diurnal variation of aerosol concentration (PM10) in summer in the Moscow region,” Opt. Atmos. Okeana. 25 (6), 495–500 (2012).Google Scholar
  14. 14.
    C. Reche, X. Querol, A. Alastuey, M. Viana, J. Pey, T. Moreno, S. Rodriguez, Y. Onzalez, R. Fernandez-Camacho, A. M. Sanchez De La Campa, J. De La Rosa, M. Dall’Osto, A. S. H. Prevot, C. Hueglin, R. M. Harrison, and P. Quincey, “Variability of levels of PM, black carbon and particle number concentration in European cities,” Atmos. Chem. Phys. Discuss, No. 11, 8665–8717 (2011).Google Scholar
  15. 15.
    M. Arkouli, A. G. Ulke, W. Endlicher, G. Baumbach, E. Schultz, U. Vogt, M. Muller, L. Dawidowski, A. Faggi, U. W. Benning, and G. Scheffknecht, “Distribution and temporal behavior of particulate matter over the urban area of Buenos Aires,” Atmos. Poll. Res. 1 (1), 1–8 (2010).CrossRefGoogle Scholar
  16. 16.
    N. Perez, J. Pey, M. Cusack, C. Reche, X. Querol, A. Alastuey, and M. Viana, “Variability of particle number, black carbon, and PM10, PM2.5, and PM1 levels and speciation: Influence of road traffic emissions on urban air quality,” Aerosol Sci. Technol. 44 (7), 487–499 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    D. J. Delene and J. A. Ogren, “Variability of aerosol optical properties at four north American surface monitoring sites,” J. Atmos. Sci. 59 (4), 1135–1150 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    O. Boucher, V. Bellassen, H. Benveniste, P. Ciais, P. Criqui, C. Guivarch, H. Le Treut, S. Mathy, and R. Seferian, “In the wake of Paris agreement, scientists must embrace new directions for climate change research,” Proc. Nat. Acad. Sci. 113 (27), 7287–7290 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    G. I. Gorchakov, “Scattering matrix and optical weather types,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 9 (2), 204–210 (1973).Google Scholar
  20. 20.
    Yu. S. Georgievskii and G. V. Rozenberg, “Air humidity as a factor of aerosol variability,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 9 (2), 126–138 (1973).Google Scholar
  21. 21.
    V. N. Sidorov, G. I. Gorchakov, A. S. Emilenko, and M. A. Sviridenkov, “Daily variations in optical and microphysical characteristics of surface aerosol,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 20 (12), 1156–1164 (1984).Google Scholar
  22. 22.
    G. V. Rozenberg, “Origination and development of atmospheric aerosol—chemically caused parameters,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 19 (1), 21–35 (1983).Google Scholar
  23. 23.
    A. A. Isakov, M. A. Sviridenkov, and V. N. Sidorov, “Condensation transformation of scattering phase factor,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 19 (12), 1321–1324 (1983).Google Scholar
  24. 24.
    G. I. Gorchakov, A. S. Emilenko, and M. A. Sviridenkov, “Single-parametric model of surface aerosol,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 17 (1), 39–49 (1981).Google Scholar
  25. 25.
    M. V. Panchenko, M. V. Kabanov, and V. Ya. Fadeev, “Statistical model of directed light scattering coefficients of coastal haze,” J. Opt. Soc. Am., No. 10, 1735 (1985).Google Scholar
  26. 26.
    G. V. Rozenberg, G. I. Gorchakov, Yu. S. Georgievskii, and Yu. S. Lyubovtseva, “Optical parameters of atmospheric aerosol,” in Atmospheric Physics and Climate Problem (Nauka, Moscow, 1980) [in Russian].Google Scholar
  27. 27.
    V. V. Veretennikov, M. V. Kabanov, and M. V. Panchenko, “Microphysical interpretation of the single-parametric model of polarization phase functions (coastal haze),” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 22 (10), 1042–1049 (1986).Google Scholar
  28. 28.
    V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).Google Scholar
  29. 29.
    V. P. Shmargunov, V. S. Kozlov, A. G. Tumakov, V. V. Pol’kin, and M. V. Panchenko, “Automatic FAN-based aerosol nephelometer,” Pribory Tekh. Eksper., No. 5, 165 (2008).Google Scholar
  30. 30.
    V. P. Shmargunov and V. V. Pol’kin, “AZ-5-based aerosol counter,” Pribory Tekh. Eksper., No. 2, 165 (2007).Google Scholar
  31. 31.
    V. S. Kozlov, V. P. Shmargunov, and V. V. Pol’kin, “Spectrophotometers for the study of characteristics of light absorption by aerosol particles,” Pribory Tekh. Eksper., No. 5, 155–157 (2008).Google Scholar
  32. 32.
    V. P. Shmargunov, Vik. V. Pol’kin, A. G. Tumakov, M. V. Panchenko, and Vas. V. Pol’kin, “Closed-volume aureole photometer,” Pribory Tekh. Eksper., No. 6, 155–157 (2010).Google Scholar
  33. 33.
    M. V. Panchenko, M. A. Sviridenkov, S. A. Terpugova, and V. S. Kozlov, “Active spectral nephelometry as a method for the study of submicron atmospheric aerosols,” Int. J. Remote Sens. 29 (9), 2567–2583 (2008).ADSCrossRefGoogle Scholar
  34. 34.
    M. V. Panchenko, S. A. Terpugova, T. A. Dokukina, V. V. Pol’kin, and E. P. Yausheva, “Multiyear variations in aerosol condensation activity in Tomsk,” Atmos. Ocean. Opt. 25 (4), 251–255 (2012).CrossRefGoogle Scholar
  35. 35.
    S. A. Terpugova, T. A. Dokukina, E. P. Yausheva, and M. V. Panchenko, “Seasonal peculiarities of manifestation of different types of gygrograms for the scattering coefficient,” Opt. Atmos. Okeana 25 (11), 952–957 (2012).Google Scholar
  36. 36.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of black carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia,” Atmos. Environ. 42 (11), 2611–2620 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Diurnal variations of the submicron aerosol and black carbon in the near-ground layer,” Atmos. Oceanic Opt. 24 (1), 30–38 (2011).CrossRefGoogle Scholar
  38. 38.
    V. V. Pol’kin, “Accounting for the dependence of the size boundaries of photoelectric counters on the complex refractive index of the material of aerosol particles,” Opt. Atmos. Okeana 30 (5), 442–446 (2017).Google Scholar
  39. 39.
    Yu. S. Lyubovtseva and G. V. Rosenberg, “Aureole part of the scattering phase function in surface air,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 2 (3), 248–262 (1966).Google Scholar
  40. 40.
    G. I. Gorchakov and A. A. Isakov, “Aureole scattering phase functions,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 10 (5), 504–511 (1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations