Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 6, pp 622–627 | Cite as

Estimation of Spectral Resolution of Imaging Spectrometers from Fraunhofer Lines with the MODTRAN Atmospheric Model

  • V. N. OstrikovEmail author
  • O. V. PlakhotnikovEmail author
  • A. V. KirienkoEmail author
SPECTROSCOPY OF AMBIENT MEDIUM
  • 5 Downloads

Abstract

A technique is suggested for estimating the spectral resolution of video spectrometers in separate sections of the sensitivity scale via comparison of experimental survey results with model (calculated for the same observation conditions) Fraunhofer lines from a set of preset values. The maximal estimation errors of the technique suggested are within 0.5 nm at the considered test lines 700 and 587 nm for both mass-produced spectroradiometers and original video spectrometers.

Keywords:

spectral resolution spectroradiometer hyperspectral imaging spectrometer MODTRAN atmospheric model 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    D. B. Balter, A. A. Belov, D. B. Vorontsov, L. A. Vedeshin, V. V. Egorov, A. P. Kalinin, A. G. Orlov, A. I. Rodionov, I. P. Rodionova, and E. Yu. Fedunin, “Satellite hyperspectrometer project for a small satellite,” Issled. Zemli Kosmosa. No. 2, 43–55 (2007).Google Scholar
  2. 2.
    S. A. Lisenko, “Atmospheric correction of multispectral satellite images based on the solar radiation transfer approximation model,” Atmos. Ocean. Opt. 31 (1), 72–85 (2018).CrossRefGoogle Scholar
  3. 3.
    V. V. Belov and M. V. Tarasenkov, “Three algorithms of statistical modeling in problems of optical communication on scattered radiation and bistatic sensing,” Atm-os. Ocean. Opt. 29 (6), 533–540 (2016).CrossRefGoogle Scholar
  4. 4.
    L. B. Liao, P. J. Jarecke, D. A. Gleichauf, and T. R. Hedman, “Performance characterization of the hyperion imaging spectrometer instrument,” Proc. SPIE—Int. Soc. Opt. Eng. 4135, 254–263 (2000).Google Scholar
  5. 5.
    L. H. Szekielda, J. H. Bowles, D. B. Gili, and W. D. Miller, “Interpretation of absorption bands in airborne hyperspectral radiance data,” Sensors 9, 2907–2925 (2009).CrossRefGoogle Scholar
  6. 6.
    A. Berk, G. P. Anderson, P. K. Acharya, and E. P. Shettle, MODTRAN 5.2.0.0 User’s Manual (Spectral Sciences, 2008).Google Scholar
  7. 7.
    V. N. Ostrikov, O. V. Plakhotnikov, and A. V. Kirienko, “Estimation of possibilities of model and experimental control of radiometric calibration of a hyperspectrometer in the 450–1000 nm region,” in Proc. of VI International Conference “Geoinformation Sciences and Ecological Development: New Approaches, Techniques, and Technologies,” Rostov-on-Don, September 8–13,2013. Vol. 2, p. 332–333 [in Russian].Google Scholar
  8. 8.
    V. N. Ostrikov, O. V. Plakhotnikov, and L. I. Chapurskii, “Estimation of capabilities of RESURS-II hyperspectrometer based on simulations of cubes with the use of high spatial resolution databases,” in Proc. of II All-Russian Scientific Conference “Problems of Military Geophysics and Environmental Control,” Ed. by S.S. Suvorov (A.F. Mozhaysky’s Military-Space Academy. St. Petersburg, 2012), vol. 2, p. 278–283 [in Russian].Google Scholar
  9. 9.
    V. N. Ostrikov and O. V. Plakhotnikov, “Influence of preliminary processing of hyperspectral data on the quality of their thematic analysis,” Issled. Zemli Kosmosa. No. 1, 1–6 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Design Bureau Lutch, St. Petersburg BranchSt. PetersburgRussia

Personalised recommendations