Atmospheric and Oceanic Optics

, Volume 32, Issue 6, pp 724–729 | Cite as

Mid-IR Optical Parametric Oscillator Based on Periodically Polled LiNbO3 Pumped by Tm3+:Lu2O3 Ceramic Laser

  • D. B. KolkerEmail author
  • O. L. AntipovEmail author
  • S. V. Larin
  • L. I. Isaenko
  • V. N. Vedenyapin
  • A. R. Ahmatkhanov
  • V. Ya. Shur


Optical parametric oscillator based on a periodically poled MgO:LiNbO3 crystal pumped by a repetitevely pulsed Tm3+:Lu2O3 ceramics laser at 1966 nm was studied. The OPO average output power up to 530 mW at wavelength of 3.7–4.2 μm was achieved at the ceramics laser power of 7.9 W. The optical-to-optical efficiency of OPO energy conversion was up to 6.7%, and the slope efficiency was up to 8%.


optical parametric oscillator periodically poled structure mid-infrared PPMgO:LN 



The lithium niobate periodic structure was manufactured with the financial support of the Russian Foundation for Basic Research (grant no. MK 18-29-20 077). The experiments on the lithium niobate periodic structure and on parametric lasing under pumping by a Tm3+:Lu2О3 ceramic laser (1.966 μm) were carried out with the financial support of the Russian Science Foundation (grant no. 19-12-00085). The Tm3+:Lu2О3 ceramic laser was upgraded with the financial support of the Presidium of the Russian Academy of Sciences (program no. 5 “Photonic Technologies in Sounding of Inhomogeneous Media and Bioobjects”).


The authors declare that they have no conflicts of interest.


  1. 1.
    A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21 (8), 10 062–10 069 (2013).CrossRefGoogle Scholar
  2. 2.
    Zhao Ben-Rui, Yao Bao-Quan, Qian Chuan-Peng, Liu Gao-You, Chen Yi, Wang Rui-Xue, Dai Tong-Yu, and Dua Xiao-Ming, “231 W dual-end-pumped Ho:YAG MOPA system and its application to a mid-infrared ZGP OPO,” Opt. Lett. 43 (24), 5989–5992 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Increasing the laser-induced damage threshold of single crystal ZnGeP2,” J. Opt. Soc. Am. 23, 2310–2316 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21 (17), 1336–1338 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    C. V. Ramana, V. V. Atuchin, U. Becker, R. C. Ewing, L. I. Isaenko, O. Yu. Khyzhun, A. Merkulov, L. D. Pokrovsky, A. K. Sinelnichenko, and S. A. Zhurkov, “Low-energy Ar+ ion-beam-induced amorphization and chemical modification of potassium titanyl arsenate (001) crystal surfaces,” J. Phys. Chem. C 111, 2702–2708 (2007).CrossRefGoogle Scholar
  6. 6.
    O. Yu. Khyzhun, V. L. Bekenev, V. V. Atuchin, A. K. Sinelnichenko, and L. I. Isaenko, “Electronic structure of KTiOAsO4: A comparative study by the full potential linearized augmented plane wave method, X-ray emission spectroscopy and X-ray photoelectron spectroscopy,” J. All. Comp. 477, 768–775 (2009).CrossRefGoogle Scholar
  7. 7.
    V. V. Atuchin, L. I. Isaenko, O. Yu. Khyzhun, L. D. Pokrovsky, A. K. Sinelnichenko, and S. A. Zhurkov, “Structural and electronic properties of the KTiOAsO4 (001) surface,” Opt. Mat. 30, 1149–1152 (2008).CrossRefGoogle Scholar
  8. 8.
    H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO : LiNbO3 device with a 5 mm × 5 mm aperture,” Opt. Lett. 30 (21), 2918–2920 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum. Electron. 15 (2), 385–393 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34 (9), 1330–1332 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    B. Wu, J. Kong, and Y. Shen, “High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 μm,” Opt. Lett. 35 (8), 1118–1120 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    Kumar S. Chaitanya, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102 (1), 31–35 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    D. Lin, S. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. E-xpress 20 (14), 15 008–15 014 (2012).CrossRefGoogle Scholar
  14. 14.
    G. Hansson and D. D. Smith, “Mid-infrared-wavelength generation in 2- μm pumped periodically poled lithium niobate,” Appl. Opt. 37, 5743–5746 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    G. Hansson and D. D. Smith, “Mid-infrared-wavelength generation in 2-nm pumped periodically poled lithium niobate,” Opt. Lett. 25, 1783–1786 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    Z. X. Bao, B. Q. Yao, Y. L. Ju, and Y. Z. Wong, “A 2.048 μm Tm,Ho:GdVO4 laser pumped doubly resonant optical parametric oscillator based on periodically poled lithium LiNbO3,” Chines Phys. Lett. 24, 1953–1954 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    G. Frith, T. McComb, B. Samson, T. Torruellas, M. Dennis, A. Carter, V. Khitrov, and K. Tankala, “Frequency doubling of Tm-doped fiber lasers for efficient 950 nm generation,” Adv. Sol.-State Photon. Paper WB5 (2009).Google Scholar
  18. 18.
    E. Honea, M. Savage-Leuchs, M. S. Bowers, T. Yimaz, and R. Mead, “Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser,” Proc. SPIE—Int. Soc. Opt. Eng. 8601, 860111–1 (2013).Google Scholar
  19. 19.
    D. Creeden, J. Blanchard, H. Pretorius, J. Limongelli, and S. Setzler, “486 nm blue laser operating at 500 KHz pulse repetition frequency,” Proc. SPIE—Int. Soc. Opt. Eng. 9728, 972829–1 (2016).Google Scholar
  20. 20.
    L. Xu, S. Liang, Q. Fu, D. P. Shepherd, D. J. Richardson, and S. Alam, “Highly efficient frequency doubling and quadrupling of a short-pulsed thulium fiber laser,” Appl. Phys. B 124, 59 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    V. Ya. Shur, A. R. Akhmatkhanov, and I. S. Baturin, “Micro and nano-domain engineering in lithium niobate,” Appl. Phys. Rev. 2, 40 604–40 610 (2015).CrossRefGoogle Scholar
  22. 22.
    D. Kolker, A. Pronyushkina, A. Boyko, N. Kostyukova, S. Trashkeev, B. Nuyshkov, and V. Shur, “Experimental investigations of 3 mm aperture PPLN structure,” J. Phys.: Conf. Ser. 793, 012014 (2017).Google Scholar
  23. 23.
    O. Antipov, A. Novikov, S. Larin, and I. Obronov, “Highly efficient 2 μm CW and Q-switched Tm3+:Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm,” Opt. Lett. 41, 2298–2301 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    O. Antipov, D. Kolker, D. Kal’yanov, S. Larin, V. Shur, and A. Akhmatkhanov, “Near-IR second harmonic generation vs mid-IR optical parametric oscillation in multigrating and fan-out PPMgO:LN Structures pumped by repetitively-pulsed 2 μm Tm3+:Lu2O3-ceramics laser,” J. Opt. Soc. Am. B 35 (7), 1674 (2018).ADSCrossRefGoogle Scholar
  25. 25. Cited April 30, 2019.Google Scholar
  26. 26.
    O. L. Antipov, R. I. Kositsyn, and I. D. Eranov, “36W Q-switched Ho3+:YAG laser at 2097 nm pumped by a Tm fiber laser: Evaluation of different Ho3+ doping concentrations,” Las. Phys. Lett. 14 (1), 015002 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. B. Kolker
    • 1
    • 2
    Email author
  • O. L. Antipov
    • 3
    Email author
  • S. V. Larin
    • 4
  • L. I. Isaenko
    • 2
    • 6
  • V. N. Vedenyapin
    • 2
    • 6
  • A. R. Ahmatkhanov
    • 5
  • V. Ya. Shur
    • 5
  1. 1.Laser Physics Institute, Siberian Brach, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia
  4. 4.IPG PhotonicsFryazinoRussia
  5. 5.Institute of Natural Sciences and Mathematics, Ural Federal UniversityYekaterinburgRussia
  6. 6.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations