Mid-IR Optical Parametric Oscillator Based on Periodically Polled LiNbO3 Pumped by Tm3+:Lu2O3 Ceramic Laser
- 4 Downloads
Abstract
Optical parametric oscillator based on a periodically poled MgO:LiNbO3 crystal pumped by a repetitevely pulsed Tm3+:Lu2O3 ceramics laser at 1966 nm was studied. The OPO average output power up to 530 mW at wavelength of 3.7–4.2 μm was achieved at the ceramics laser power of 7.9 W. The optical-to-optical efficiency of OPO energy conversion was up to 6.7%, and the slope efficiency was up to 8%.
Keywords:
optical parametric oscillator periodically poled structure mid-infrared PPMgO:LNNotes
FUNDING
The lithium niobate periodic structure was manufactured with the financial support of the Russian Foundation for Basic Research (grant no. MK 18-29-20 077). The experiments on the lithium niobate periodic structure and on parametric lasing under pumping by a Tm3+:Lu2О3 ceramic laser (1.966 μm) were carried out with the financial support of the Russian Science Foundation (grant no. 19-12-00085). The Tm3+:Lu2О3 ceramic laser was upgraded with the financial support of the Presidium of the Russian Academy of Sciences (program no. 5 “Photonic Technologies in Sounding of Inhomogeneous Media and Bioobjects”).
CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.
REFERENCES
- 1.A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21 (8), 10 062–10 069 (2013).CrossRefGoogle Scholar
- 2.Zhao Ben-Rui, Yao Bao-Quan, Qian Chuan-Peng, Liu Gao-You, Chen Yi, Wang Rui-Xue, Dai Tong-Yu, and Dua Xiao-Ming, “231 W dual-end-pumped Ho:YAG MOPA system and its application to a mid-infrared ZGP OPO,” Opt. Lett. 43 (24), 5989–5992 (2018).ADSCrossRefGoogle Scholar
- 3.K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Increasing the laser-induced damage threshold of single crystal ZnGeP2,” J. Opt. Soc. Am. 23, 2310–2316 (2006).ADSCrossRefGoogle Scholar
- 4.W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21 (17), 1336–1338 (1996).ADSCrossRefGoogle Scholar
- 5.C. V. Ramana, V. V. Atuchin, U. Becker, R. C. Ewing, L. I. Isaenko, O. Yu. Khyzhun, A. Merkulov, L. D. Pokrovsky, A. K. Sinelnichenko, and S. A. Zhurkov, “Low-energy Ar+ ion-beam-induced amorphization and chemical modification of potassium titanyl arsenate (001) crystal surfaces,” J. Phys. Chem. C 111, 2702–2708 (2007).CrossRefGoogle Scholar
- 6.O. Yu. Khyzhun, V. L. Bekenev, V. V. Atuchin, A. K. Sinelnichenko, and L. I. Isaenko, “Electronic structure of KTiOAsO4: A comparative study by the full potential linearized augmented plane wave method, X-ray emission spectroscopy and X-ray photoelectron spectroscopy,” J. All. Comp. 477, 768–775 (2009).CrossRefGoogle Scholar
- 7.V. V. Atuchin, L. I. Isaenko, O. Yu. Khyzhun, L. D. Pokrovsky, A. K. Sinelnichenko, and S. A. Zhurkov, “Structural and electronic properties of the KTiOAsO4 (001) surface,” Opt. Mat. 30, 1149–1152 (2008).CrossRefGoogle Scholar
- 8.H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO : LiNbO3 device with a 5 mm × 5 mm aperture,” Opt. Lett. 30 (21), 2918–2920 (2005).ADSCrossRefGoogle Scholar
- 9.Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum. Electron. 15 (2), 385–393 (2009).ADSCrossRefGoogle Scholar
- 10.F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34 (9), 1330–1332 (2009).ADSCrossRefGoogle Scholar
- 11.B. Wu, J. Kong, and Y. Shen, “High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 μm,” Opt. Lett. 35 (8), 1118–1120 (2010).ADSCrossRefGoogle Scholar
- 12.Kumar S. Chaitanya, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102 (1), 31–35 (2011).ADSCrossRefGoogle Scholar
- 13.D. Lin, S. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. E-xpress 20 (14), 15 008–15 014 (2012).CrossRefGoogle Scholar
- 14.G. Hansson and D. D. Smith, “Mid-infrared-wavelength generation in 2- μm pumped periodically poled lithium niobate,” Appl. Opt. 37, 5743–5746 (1998).ADSCrossRefGoogle Scholar
- 15.G. Hansson and D. D. Smith, “Mid-infrared-wavelength generation in 2-nm pumped periodically poled lithium niobate,” Opt. Lett. 25, 1783–1786 (2000).ADSCrossRefGoogle Scholar
- 16.Z. X. Bao, B. Q. Yao, Y. L. Ju, and Y. Z. Wong, “A 2.048 μm Tm,Ho:GdVO4 laser pumped doubly resonant optical parametric oscillator based on periodically poled lithium LiNbO3,” Chines Phys. Lett. 24, 1953–1954 (2007).ADSCrossRefGoogle Scholar
- 17.G. Frith, T. McComb, B. Samson, T. Torruellas, M. Dennis, A. Carter, V. Khitrov, and K. Tankala, “Frequency doubling of Tm-doped fiber lasers for efficient 950 nm generation,” Adv. Sol.-State Photon. Paper WB5 (2009).Google Scholar
- 18.E. Honea, M. Savage-Leuchs, M. S. Bowers, T. Yimaz, and R. Mead, “Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser,” Proc. SPIE—Int. Soc. Opt. Eng. 8601, 860111–1 (2013).Google Scholar
- 19.D. Creeden, J. Blanchard, H. Pretorius, J. Limongelli, and S. Setzler, “486 nm blue laser operating at 500 KHz pulse repetition frequency,” Proc. SPIE—Int. Soc. Opt. Eng. 9728, 972829–1 (2016).Google Scholar
- 20.L. Xu, S. Liang, Q. Fu, D. P. Shepherd, D. J. Richardson, and S. Alam, “Highly efficient frequency doubling and quadrupling of a short-pulsed thulium fiber laser,” Appl. Phys. B 124, 59 (2018).ADSCrossRefGoogle Scholar
- 21.V. Ya. Shur, A. R. Akhmatkhanov, and I. S. Baturin, “Micro and nano-domain engineering in lithium niobate,” Appl. Phys. Rev. 2, 40 604–40 610 (2015).CrossRefGoogle Scholar
- 22.D. Kolker, A. Pronyushkina, A. Boyko, N. Kostyukova, S. Trashkeev, B. Nuyshkov, and V. Shur, “Experimental investigations of 3 mm aperture PPLN structure,” J. Phys.: Conf. Ser. 793, 012014 (2017).Google Scholar
- 23.O. Antipov, A. Novikov, S. Larin, and I. Obronov, “Highly efficient 2 μm CW and Q-switched Tm3+:Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm,” Opt. Lett. 41, 2298–2301 (2016).ADSCrossRefGoogle Scholar
- 24.O. Antipov, D. Kolker, D. Kal’yanov, S. Larin, V. Shur, and A. Akhmatkhanov, “Near-IR second harmonic generation vs mid-IR optical parametric oscillation in multigrating and fan-out PPMgO:LN Structures pumped by repetitively-pulsed 2 μm Tm3+:Lu2O3-ceramics laser,” J. Opt. Soc. Am. B 35 (7), 1674 (2018).ADSCrossRefGoogle Scholar
- 25.http://www.as-photonics.com/snlo. Cited April 30, 2019.Google Scholar
- 26.O. L. Antipov, R. I. Kositsyn, and I. D. Eranov, “36W Q-switched Ho3+:YAG laser at 2097 nm pumped by a Tm fiber laser: Evaluation of different Ho3+ doping concentrations,” Las. Phys. Lett. 14 (1), 015002 (2017).ADSCrossRefGoogle Scholar