Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 6, pp 706–709 | Cite as

Metal Vapor Active Element Design

  • V. F. Fedorov
  • M. V. TrigubEmail author
  • K. Yu. SemenovEmail author
  • D. V. ShiyanovEmail author
  • V. V. VlasovEmail author
OPTICAL SOURCES AND RECEIVERS FOR ENVIRONMENTAL STUDIES
  • 5 Downloads

Abstract

A novel metal vapor active element is constructed. The functions of metal vaporization and metal vapor excitation are divided between two different sources, which is a feature of the new element. Metal vapors are formed by induction heating of a dispenser located outside the active zone. The excitation is carried out by the commutation of a high-voltage pump pulse. The efficiency of the design has been tested in the excitation of copper atoms. Under conditions of independent heating of the dispenser, stable lasing was obtained at 510.6 and 578.2 nm lines at a pumping pulse repetition rate of 15 kHz.

Keywords:

light sources metal vapor lasers active element design inductive heating 

Notes

FUNDING

This work was performed within State Assignment no. АААА-A17-117021310150-0.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    Optical Systems with Brightness Amplifiers, Ed. by G.G. Petrash (Nauka, Moscow, 1991), vol. 206 [in Russian].Google Scholar
  2. 2.
    M. V. Trigub, V. V. Platonov, K. V. Fedorov, G. S. Evtushenko, and V. V. Osipov, “CuBr laser for nanopowder production visualization,” Atmos. Ocean. Opt. 29 (4), 376–380 (2016).CrossRefGoogle Scholar
  3. 3.
    Self-restricted Metal Lasers, Ed. by V.M. Batenin (Fizmatlit, Moscow, 2009), vol. 1 [in Russian].Google Scholar
  4. 4.
    A. N. Soldatov, V. F. Fedorov, and N. A. Yudin, “Efficiency of a copper vapour laser with partial discharge of a storage capacitor,” Quantum Electron. 24 (8), 677–679 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    A. N. Soldatov and V. F. Fedorov, “Cu vapor laser with a pulse repetition rateof up to 230 kHz,” Izv. Vysch. Ucheb. Zaved. Fiz. 26 (9), 80–84 (1983).Google Scholar
  6. 6.
    A. N. Soldatov, “Physics and technology of copper-vapor lasers with controlled parameters,” Atmos. Ocean. Opt. 6 (6), 650–658 (1993).Google Scholar
  7. 7.
    V. F. Fedorov, D. V. Shiyanov, K. V. Fedorov, G. S. Evtushenko, S. N. Torgaev, and A. E. Kulagin, “Combined weak-current discharge in a copper-vapor laser,” Tech. Phys. Rus. J. Appl. Phys. 61 (9), 1395–1398 (2016).Google Scholar
  8. 8.
    P. A. Bokhan and V. A. Gerasimov, USSR Inventor’s Certificate no. 755 136, Priority of January 9, 1979.Google Scholar
  9. 9.
    P. A. Bokhan, E. S. Bukova, G. S. Kiyashkina, V. M. Klimkin, and V. I. Solomonov, “The technique of the study of the positive column of a gas discharge under high temperatures,” Pribory Tekhn. Exper. No 1, 160–161 (1974).Google Scholar
  10. 10.
    V. F. Fedorov, M. V. Trigub, D. V. Shiyanov, and G. S. Evtushenko, “Induction-heated metal vapor lasers,” Opt. Atmos. Okeana 31 (3), 203–206 (2018).Google Scholar
  11. 11.
    M. V. Trigub, D. N. Ogorodnikov, and V. A. Dimaki, “Study of metal vapor laser power supply with pulsed charging of storage capacitance,” Opt. Atmos. Okeana 27 (12), 1112–1115 (2014).Google Scholar
  12. 12.
    C. E. Little, Metal Vapor Lasers: Physics, Engineering & Applications (John Willey & Sons Ltd, Chichester, 1998).Google Scholar
  13. 13.
    V. G. Sokovikov, A. G. Filonov, and D. V. Shiyanov, “The comparison of lasing parameters of Ne + Eu and He + Eu lasers,” Atmos. Oceanic Opt. 32 (3), 366–370 (2019).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations