Atmospheric and Oceanic Optics

, Volume 32, Issue 5, pp 534–539 | Cite as

Trends in Atmospheric Aerosol Characteristics in Moscow Derived from Multiyear AERONET Measurements

  • E. Yu. ZhdanovaEmail author
  • Yu. O. KhlestovaEmail author
  • N. E. ChubarovaEmail author


We estimated the trends of aerosol optical depth (AOD) in Moscow over 2002–2016 using ground-based AERONET measurements. Negative AOD trends were found. It is shown that AOD trends differ depending on month; the most negative trend is observed in April if neglecting the effect of forest fires. Variations in AOD and atmospheric circulation indices are jointly analyzed. It is shown that Scandinavian index has an additional effect on interannual AOD variations in April. The predominant aerosol type (recorded in more than 60% of observations) for the territory of Moscow is fine-fraction weakly absorbing aerosol. No directional changes in aerosol types have been observed in recent decades.


atmospheric aerosol aerosol optical depth AERONET multiyear measurements Moscow 



This work was supported by the Russian Science Foundation (through the grant no. 17-77-10 132).


The authors declare that they have no conflicts of interest.


  1. 1.
    J. Yoon, W. V. Hoyningen-Huene, M. Vountas, and J. P. Burrows, “Analysis of linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China,” Atmos. Chem. Phys. 11 (23), 12 149–12 167 (2011).CrossRefGoogle Scholar
  2. 2.
    J. Li, B. E. Carlson, O. Dubovik, and A. A. Lacis, “Recent trends in aerosol optical properties derived from AERONET measurements,” Atmos. Chem. Phys. 14 (22), 12271–12289 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, D. M. Kabanov, G. I. Kornienko, B. Holben, and A. Smirnov, “Atmospheric aerosol optical depth in Far East Primorye according to data of satellite and ground-based observations,” Opt. Atmos. Okeana 24 (8), 654–660 (2011).Google Scholar
  4. 4.
    S. Yu. Andreev, S. V. Afonin, and S. A. Bedareva, S. A. Beresnev, O. A. Bukin, and L. P. Golobokova, E. V. Gorbarenko, S. Yu. Gorda, K. G. Gribanov, T. A. Eremina, G. S. Zhamsueva, T. B. Zhuravleva, V. I. Zakharov, A. S. Zayakhanov, D. M. Kabanov, V. S. Kozlov, and G. I. Kornienko, N. Ya. Lomakina, A. P. Luzhetskaya, A. Yu. Maior, Yu. I. Markelov, E. S. Nagovitsyna, S. A. Naguslaev, I. M. Nasrtdinov, O. G. Netsvetaeva, S. V. Nikolashkin, V. A. Obolkin, N. A. Onishchuk, A. N. Pavlov, M. V. Panchenko, V. A. Poddubnyi, V. V. Pol’kin, V. L. Potemkin, T. M. Rasskazchikova, N. V. Rokotyan, A. P. Rostov, S. M. Sakerin, P. A. Salyuk, A. V. Smirnov, T. K. Sklyadneva, S. Yu. Stolyarchuk, M. A. Tashchilin, S. A. Terpugova, Yu. S. Turchinovich, S. A. Turchinovich, U. G. Filippova, T. V. Khodzher, B. N. Kholben, V. V. Tsydypov, T. Yu. Chesnokova, V. P. Shmargunov, K. A. Shmirko, and M. V. Engel’, Study of Radiative Parameters of Aerosol in Russian Arctic, Ed. by S. M. Sakerin (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].Google Scholar
  5. 5.
    S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, D. M. Kabanov, V. A. Poddubnyi, and A. P. Luzhetskaya, “Spatiotemporal variations in the atmospheric aerosol optical depth on the territory of Povolzhye, Urals, and Western Siberia,” Opt. Atmos. Okeana. 25 (11), 958–962 (2012).Google Scholar
  6. 6.
    E. V. Gorbarenko and A. N. Rublev, “Long-term changes in the aerosol optical thickness in moscow and correction under strong atmospheric turbidity,” Izv. Atmos. Ocean. Phys. 52 (2), 188–195 (2016).CrossRefGoogle Scholar
  7. 7.
    N. Y. Chubarova, A. A. Poliukhov, and I. D. Gorlova, “Long-term variability of aerosol optical thickness in Eastern Europe over 2001–2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction,” Atmos. Meas. Tech. 9 (2), 313–334 (2016).CrossRefGoogle Scholar
  8. 8.
    N. Chubarova, A. Smirnov, and B. N. Holben, “Aerosol properties in Moscow according to 10 years of AERONET measurements at the meteorological observatory of Moscow State University,” Geogr., Environ., Sustain. 4 (1), 19–32 (2011).Google Scholar
  9. 9.
    J. Lee, J. Kim, C. H. Song, S. B. Kim, Y. Chun, B. J. Sohn, and B. N. Holben, “Characteristics of aerosol types from AERONET sunphotometer measurements,” Atmos. Environ. 44 (26), 3110–3117 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454 (1971), 903–995 (1998).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Y. Wu and Y. L. Chung, “Misalignment diagnosis of rotating machinery through vibration analysis via the hybrid EEMD and EMD approach,” Smart Mater. Struct. 18 (9), 095004 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    K. Torseth, W. Aas, K. Breivik, A. M. Fjæraa, M. Fiebig, A. G. Hjellbrekke, C. L. Myhre, S. Solberg, and K. E. Yttri, “Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009,” Atmos. Chem. Phys. 12 (12), 5447–5481 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    About the State of the Environment in Moscow in 2017. Report, Ed. by A.O. Kul’bachevskii (DPiOOS, Moscow, 2018) [in Russian].Google Scholar
  14. 14.
    M. E. Koukouli, S. Kazadzis, V. Amiridis, C. Ichoku, D. S. Balis, and A. F. Bais, “Signs of a negative trend in the MODIS aerosol optical depth over the Southern Balkans,” Atmos. Environ. 44 (9), 1219–1228 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Y. Zhang, M. S. Wong, and J. Nichol, “Global trends of aerosol optical thickness using the ensemble empirical mode decomposition method,” Int. J. Climatol. 36 (13), 4358–4372 (2016).CrossRefGoogle Scholar
  16. 16.
    Environmental and Climate Characteristics of the Atmosphere in Moscow in 2017 According to the Measurements of the Moscow State University Meteorological Observatory, Ed. by M. A. Lokoshchenko (MAKS Press, Moscow, 2018) [in Russian].Google Scholar
  17. 17.
    E. V. Rocheva and V. D. Smirnov, “Trends in changes in the long-term “heat wave” on the Russian territory,” Problemy Ekol. Monitor. Model. Ekosist. 25, 94–114 (2013).Google Scholar
  18. 18.
    V. V. Popova, “Present-day changes in climate in the north of Eurasia as a manifestation of variation of the large-scale atmospheric circulation,” Fundam. Prikl. Klimatol. No. 1, 84–112 (2018).Google Scholar
  19. 19.
    T. Gao, J. Yu, and H. Paek, “Impacts of four Northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific,” Theor. Appl. Climatol 129 (3-4), 815–831 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    O. Dubovik, A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements,” J. Geophys. Res.: Atmos. 105 (D8), 9791–9806 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations