Atmospheric and Oceanic Optics

, Volume 32, Issue 5, pp 545–550 | Cite as

Simulation of Transport Coefficients of Aerosols and Nanofluids with Hollow Nanoparticles

  • V. Ya. RudyakEmail author
  • S. L. KrasnolutskiiEmail author


Diffusion of hollow nanoparticles in low-density and rarefied gases and the viscosity of aerosols with such particles are studied using the previously developed kinetic theory and molecular dynamics method. Nitrogen-based aerosols with hollow and solid aluminum and uranium nanoparticles are considered at a temperature of 300 K and atmospheric pressure. Diameter of the nanoparticles was varied from 5 to 100 nm; the thickness of walls of hollow nanoparticles was 1 nm. It is shown that the diffusion coefficients of hollow nanoparticles always exceed those of solid particles of the same size and the same material, but this difference does not exceed 1%. The viscosity of aerosols with hollow nanoparticles is always lower than of aerosols with solid particles. Using the molecular dynamics method, the diffusion coefficients of hollow and solid nanoparticles of the same diameter and the same material in dense argon are found to be equal.


nanoparticles hollow nanoparticles aerosol nanoaerosol gas nanosuspension nanofluid diffusion viscosity 



The work was supported by the Russian Foundation for Basic Research (grant nos. 17-01-00040 and 19-08-0040).


The authors declare that they have no conflicts of interest.


  1. 1.
    V. Ya. Rudyak and A. V. Minakov, Modern Problems in Micro- and Nanofluidonics (Nauka, Novosibirsk, 2016) [in Russian].Google Scholar
  2. 2.
    E. Cunningham, “On the velocity of steady fall of spherical particles through fluid medium,” Proc. R. Soc. 83, 357–365 (1910).ADSCrossRefGoogle Scholar
  3. 3.
    R. A. Millikan, “Brownian movement in cases at low pressures,” Phys. Rev. 1 (3), 218–221 (1913).ADSCrossRefGoogle Scholar
  4. 4.
    R. A. Millikan, “The general law of fall of a small spherical body through a gas, and it’s bearing upon the nature of molecular reflection from surfaces,” Phys. Rev. 22 (1), 1–23 (1923).ADSCrossRefGoogle Scholar
  5. 5.
    C. N. Davies, “Definitive equations for the fluid resistance of spheres,” Proc. Phys. Soc. London 57 (322), Part 4, 259 (1945).ADSCrossRefGoogle Scholar
  6. 6.
    S. K. Friedlander, Smoke, Dust, Haze. Fundamentals of Aerosol Dynamics (Oxford University Press, New York, Oxford, 2000).Google Scholar
  7. 7.
    V. Ya. Rudyak and S. L. Krasnolutskii, “Kinetic description of nanoparticle diffusion in rarefied gas,” Dokl. Phys. 46 (12), 897–899 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    V. Ya. Rudyak, S. L. Krasnolutskii, A. G. Nasibulin, and E. I. Kauppinen, “Methods of measuring the diffusion coefficient and sizes of nanoparticles in a rarefied gas,” Dokl. Phys. 47 (5), 758–761 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    P. S. Epstein, “On the resistance experienced by spheres in their motion through gases,” Phys. Rev. 23, 710 (1924).ADSCrossRefGoogle Scholar
  10. 10.
    P. A. Baron and K. Willeke, Aerosol measurement: Principles, techniques, and applications (Wiley, New York, 2001).Google Scholar
  11. 11.
    V. Ya. Rudyak, S. N. Dubtsov, and A. M. Baklanov, “Measurements of the temperature dependent diffusion coefficient of nanoparticles in the range of 295-600 K at atmospheric pressure,” J. Aerosol Sci. 40 (10), 833–843 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    V. Ya. Rudyak, S. L. Krasnolutskii, and E. N. Ivashchenko, “Influence of the physical properties of the material of nanoparticles on their diffusion in rarefied gases,” J. Engineer. Phys. Thermophys. 81 (3), 520–524 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    V. Ya. Rudyak and S. L. Krasnolutskii, “On the viscosity of rarefied gas suspensions containing nanoparticles,” Dokl. Phys. 48 (4), 583–586 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    V. Ya. Rudyak and S. L. Krasnolutskii, “Effective viscosity coefficient of rarefied gas nanosuspensions,” Atmos. Ocean. Opt. 17 (5-6), 443–448 (2004).Google Scholar
  15. 15.
    A. A. Einstein, “A new determination of molecular sizes,” Ann. Phys. 19, 289–306 (1906).CrossRefGoogle Scholar
  16. 16.
    G. K. Batchelor, “The effect of Brownian motion on the bulk stress in a suspension of spherical particles,” J. Fluid Mech. 83, Part 1, 97–117 (1977).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1881).zbMATHGoogle Scholar
  18. 18.
    V. Ya. Rudyak, A. A. Belkin, E. A. Tomilina, and V. V. Egorov, “Nanoparticle friction force and effective viscosity of nanofluids,” Defect Diffus. Forum 273–276, 566–571 (2008).Google Scholar
  19. 19.
    V. Ya. Rudyak and A. V. Minakov, “Thermophysical properties of nanofluids,” Eur. Phys. J. E 41, 12 p. (2018).Google Scholar
  20. 20.
    V. Ya. Rudyak and S. L. Krasnolutskii, “dependence of the viscosity of nanofluids on nanoparticle size and material,” Phys. Lett. A 378, 1845–1849 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    V. Ya. Rudyak, A. V. Minakov, M. S. Smetanina, and M. I. Pryazhnikov, “Experimental data on the dependence of water and ethylene-glycol nanofluid viscosity on the particle size and material,” Dokl. Phys. 61 (3), 152–154 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    A. Lohani, A. Verma, H. Joshi, N. Yadav, and N. Karki, “Nanotechnology-based cosmeceuticals,” ISRN Dermatol, 14 p. (2014). CrossRefGoogle Scholar
  23. 23.
    A. Sharma, S. Kumar, and N. Mahadevan, “Nanotechnology: A promising approach for cosmetics,” Int. J. Recent Adv. Pharm. Rec. 2 (2), 54–61 (2012).Google Scholar
  24. 24.
    V. Ya. Rudyak and S. L. Krasnolutskii, “Potentials of interaction between hollow and with carrier medium molecules,” Dokl. Acad. Nauk, No. 2(35), 32–42 (2017).Google Scholar
  25. 25.
    V. Ya. Rudyak and S. L. Krasnolutskii, “Diffusion of nanoparticles in a rarefied gas,” Tech. Phys. 72 (7), 807–813 (2002).CrossRefGoogle Scholar
  26. 26.
    V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, “Nanoparticle interaction potential,” Dokl. Phys. 57 (1), 33–35 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).zbMATHGoogle Scholar
  28. 28.
    S. Chapman, T. G. Cowling, and D. Burnett, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge University Press, Cambridge, 1990).Google Scholar
  29. 29.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).Google Scholar
  30. 30.
    H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik, “Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials,” J. Phys. Chem. C 112 (44), 17281–17290 (2008).CrossRefGoogle Scholar
  31. 31.
    V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, “Molecular dynamics simulation of nanoparticle diffusion in dense fluids,” Microfluid. Nanofluid. 11 (4), 501–506 (2011).CrossRefGoogle Scholar
  32. 32.
    P. Schofield, “Computer simulation studies of the liquid state,” Comput. Phys. Commun. 5 (1), 17–23 (1973).ADSCrossRefGoogle Scholar
  33. 33.
    D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Nauka, Moscow, 1971) [in Russian].Google Scholar
  34. 34.
    V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, and V. V. Egorov, “The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient,” High Temp. 46 (1), 35–45 (2008).CrossRefGoogle Scholar
  35. 35.
    G. E. Normann and V. V. Stegailov, “Molecular dynamic method: The concept and the reality,” Nanostructury. Matem. Fiz. Model. 4 (1), 31–59 (2011).Google Scholar
  36. 36.
    G. E. Normann and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,” Math. Models Comput. Simul. 24 (6), 3–44 (2012).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Novosibirsk State University of Architecture and Civil Engineering (SIBSTRIN)NovosibirskRussia

Personalised recommendations