Skip to main content
Log in

The Influence of the Internal Structure of Particles on Optical Properties of Stratospheric Aerosol, Radiative Forcing, and Global Annual Average Temperature

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

One- and two-phase aerosol particles of stratospheric aerosol are considered. The first ones include homogeneous particles that are liquid drops of a 75% sulfuric acid solution; the second ones, droplets of sulfuric acid with inorganic admixtures dissolved in it. Optical properties of two-phase particles are considered in the approximation of two-layer, enlightened, and quasi-homogeneous spheres. The influence of the internal structure of aerosol particles and parameters of their size distribution on the instantaneous radiative forcing and radiation temperature of the underlying surface for an aerosol layer with an optical depth equal to 0.05 in the visible range is studied. Particles constituting the layer can lead both to the greenhouse and to the antigreenhouse effect. It is shown that the antigreenhouse effect (on the order of 4–8 W/m2) is created by ensembles of two-layer particles: (i) with narrow size distributions and (ii) with wider distributions and average radii not exceeding 0.25–0.40 μm; the greenhouse effect (on the order of 2–6 W/m2) arises at larger average radii and wide distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. IPCC: Climate Change 2013—The Physical Science Basis (Cambridge University Press, 2014).

  2. A. Robock, “Volcanic eruption and climate,” Rev. Geophys. 38 (2), 191–219 (2000).

    Article  ADS  Google Scholar 

  3. M. I. Budyko, Climate Changes (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  4. W. M. Gray, W. M. Frank, M. L. Corrin, and C. A. Stokes, “Weather modification by carbon dust absorption of solar energy,” J. Appl. Meteorol. 15, 355–386 (1976).

    Article  ADS  Google Scholar 

  5. M. I. Budyko, G. S. Golitsyn, and Yu. A. Izrael’, Global Climate Catastrophes (Gidrometeoizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  6. K. Ya. Kondratyev, “Aerosol radiative forcing,” Atmos. Ocean. Opt. 16 (1), 1–12 (2003).

    Google Scholar 

  7. Yu. A. Izrael’, “An effective approach to climate maintenance on the modern level as the main aim of solution of the climate problem,” Meteorol. Gidrol., No. 10, 5–9 (2005).

  8. K. Ya. Kondratyev, “Aerosol and climate studies: Current state and prospects. 3. Aerosol radiative forcing,” Atmos. Ocean. Opt. 19 (7), 505–513 (2006).

    Google Scholar 

  9. Macro-Engineering. A Challenge for the Future, Ed. by V. Badescu R.B. Cathcart, and R.D. Schuiling (Springer, Dordrecht, 2006), vol. 54.

  10. Possibilities of Preventing the Climate Change and its Negative Consequences. The Kioto Protocol Problem (Nauka, Moscow, 2006) [in Russian].

  11. Yu. A. Izrael’, I. I. Borzenkova, and D. A. Severov, “Role of stratospheric aerosols in modern climate preservation,” Meteorol. Gidrol., No. 1, 5–14 (2007).

  12. P. J. Rasch, P. J. Crutzen, and D. B. Coleman, “Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size,” Geophys. Rev. Lett. 35, L02809 (2008).

  13. G. M. Krekov and P. O. Rakhimov, Optical-Location Model of Continental Aerosol (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  14. A. P. Prishivalko, V. A. Babenko, and V. N. Kuz’min, Light scattering and absorption by inhomogeneous and anisotropic spherical particles (Nauka i Tekhnika, Minsk, 1984) [in Russian].

    Google Scholar 

  15. L. C. Ivlev, “Aerosol structure in the stratosphere,” in Parameterization of Certain Unpremeditated and Directed Effects on the Atmosphere (LSU, Leningrad, 1984), is. 84, p. 74–89 [in Russian].

  16. A. V. Vasil’ev and L. S. Ivlev, “Empirical models and optical parameters of aerosol polydispersions of two-layer spherical particles,” Atmos. Ocean. Opt. 10 (8), 534–539 (1997).

    Google Scholar 

  17. L. S. Ivlev and O. M. Korostina, “Calculations of optical parameters of stratospheric aerosol two-layer particles,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 30 (6), 802–806 (1994).

    Google Scholar 

  18. L. S. Ivlev and Yu. A. Dovgalyuk, Physics of Atmospheric Aerosol Systems (NIIKh SpbGU, St. Petersburg, 1999) [in Russian].

  19. A. M. Kokorin and K. S. Shifrin, “Influence of humidity on the light-scattering characteristics of radially inhomogeneous aerosol particles in the boundary layer over an ocean,” J. Opt. Technol. 67 (1), 45–49 (2000).

    Article  ADS  Google Scholar 

  20. I. L. Karol’ and V. A. Frol’kis, “Energy balance radiative convection model of the global climate,” Meteorol. Gidrol., No. 8, 59–68 (1984).

  21. A. E. Aloyan, A. N. Ermakov, and V. O. Arutyunyan, “Aerosols in the troposphere and lower stratosphere. Sulfate particles in northern latitudes,” Opt. Atmos. Okeana 31 (2), 136–142 (2018).

    Google Scholar 

  22. A. E. Aloyan, Simulation of the Dynamics and Kinetics of Atmospheric Admixtures and Aerosols (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  23. A preliminary cloudless standard atmosphere for radiation computation (WMO, 1986).

  24. V. E. Zuev and M. V. Kabanov, Modern Problems of Atmospheric Optics, Vol. 4, Optics of Atmospheric Aerosols (Gidrometeoizdat, Leningrad, 1987) [in Russian].

  25. A. M. Kokorin, “How moisture in the air affects the light-scattering and -absorption characteristics of radially inhomogeneous aerosol particles in the boundary layer over the sea,” J. Opt. Technol. 79 (12), 748–753 (2012).

    Article  Google Scholar 

  26. M. Ya. Maarov, V. P. Shariv, and L. D. Lomakinav, Optical Parameters of Model Aerosols in the Earth’s Atmosphere (Keldysh Institute of Applied Mathematics, Moscow, 1989) [in Russian]

    Google Scholar 

  27. G. L. Stenchikov, I. Kirchner, A. Robock, H.-F. Graf, J. C. Antuna, R. G. Gringer, A. Lambert, and L. Thomason, “Radiative forcing from the 1991 Mount Pinatubo volcanic eruption,” J. Geophys. Res. D 103 (12), 13837–13857 (1998).

    Article  ADS  Google Scholar 

  28. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

    Book  Google Scholar 

  29. V. A. Frolkis and E. V. Rozanov, “Radiation code for climate and general circulation models,” in IRS'92 Current problems in Atmospheric Radiation (Deepak Publ., Hampton, USA, 1993), p. 176–179.

    Google Scholar 

  30. V. A. Frolkis and I. L. Karol’, “Simulation of the effect of stratospheric aerosol dimming parameters on the efficiency of offsetting global greenhouse climate warming,” Atmos. Ocean. Opt. 24 (1), 74–87 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Frol’kis or A. M. Kokorin.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frol’kis, V.A., Kokorin, A.M. The Influence of the Internal Structure of Particles on Optical Properties of Stratospheric Aerosol, Radiative Forcing, and Global Annual Average Temperature. Atmos Ocean Opt 32, 306–315 (2019). https://doi.org/10.1134/S1024856019030072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019030072

Keywords:

Navigation