Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 158–164 | Cite as

Specific Features of Transport and Transformation of Atmospheric Aerosol and Gas Admixtures in the Coastal Zone of Lake Baikal

  • A. S. Zayakhanov
  • G. S. Zhamsueva
  • V. V. Tsydypov
  • T. S. Balzhanov
  • Yu. S. BalinEmail author
  • I. E. Penner
  • G. P. Kokhanenko
  • S. V. Nasonov
REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE

Abstract

Diurnal dynamics of atmospheric gases and the meteorological characteristics of the atmosphere at different altitudes on the southeastern coast of Lake Baikal are experimentally studied. The measurements were performed at the Boyarsky stationary site (51.84° N, 106.06° E) in July–August 2015–2016. Simultaneously, lidar measurements were carried out to study the formation of the vertical structure of aerosol fields both under natural (background) conditions and in the presence of sources of smoke from forest fires.

Keywords:

Lake Baikal tropospheric ozone nitrogen oxides aerosol lidar meteorological parameters 

Notes

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foundation for Basic Research (grant no. 17-29-05044_ofi).

REFERENCES

  1. 1.
    B.D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].Google Scholar
  2. 2.
    V. I. Demin, M. I. Beloglazov, and E. G. Mokrov, “Foehn effects above the Khibiny in changes of the surface ozone concentration,” Atmos. Ocean. Opt. 18 (7), 551–554 (2005).Google Scholar
  3. 3.
    V. I. Demin and M. I. Beloglazov, “Influence of local circulation processes on the surface ozone dynamics,” Atmos. Ocean. Opt. 17 (4), 292–294 (2004).Google Scholar
  4. 4.
    A. S. Zayakhanov, G. S. Zhamsueva, V. V. Tsydypov, and T. S. Bal’zhanov, “Results of surface ozone monitoring in the atmosphere over Ulan-Ude,” Rus. Meteorol. Hydrol., No. 12, 846–852 (2013).Google Scholar
  5. 5.
    V. I. Demin, M. I. Beloglazov, and N. F. Elanskii, “On relation between the surface ozone concentration and the mixing layer height,” Atmos. Ocean. Opt. 17 (8), 595–598 (2004).Google Scholar
  6. 6.
    A. S. Zayakhanov, G. S. Zhamsueva, V. V. Tsydypov, and T. S. Bal’zhanov, “Influence of dynamic processes on variations of ozone and other trace gases near the coastal zone of Lake Baikal,” Opt. Atmos. Okeana. 28 (6), 505–511 (2015).Google Scholar
  7. 7.
    A. S. Zayakhanov, G. S. Zhamsueva, V. P. Butukhanov, and Yu. L. Lomukhin, “Ozone and nitrogen oxide concentrations in near-surface atmospheric layer of Lake Baikal,” Atmos. Ocean. Opt. 19 (7), 570–574 (2006).Google Scholar
  8. 8.
    K. P. Kutsenogii, V. L. Potemkin, P. K. Kutsenogii, and A. I. Smirnova, “Influence of aerosols on the spectral optical thickness of the atmosphere over southern part of Lake Baikal,” Atmos. Ocean. Opt. 7 (7), 463–467 (1994).Google Scholar
  9. 9.
    Yu. A. Anokhin, A. O. Kokorin, T. A. Prokhorova, and M. P. Anisimov, “Aerosol pollution of the atmosphere over Lake Baikal and the effect of industrial sources,” Monitoring of the Lake Baikal State (Gidrometeoizdat, Leningrad, 1991), p. 44–50 [in Russian].Google Scholar
  10. 10.
    M. V. Panchenko, B. D. Belan, and V. S. Shamanaev, “Aircraft-laboratory of the IAO SB RAS in the study of the lake Baykal environment,” Atmos. Ocean. Opt. 10 (4-5), 289–294 (1997).Google Scholar
  11. 11.
    Yu. S. Balin and A. D. Ershov, “Lidar investigations of the vertical structure of aerosol fields in the atmosphere in the Lake Baikal basin,” Atmos. Ocean. Opt. 13 (6-7), 586–591 (2000).Google Scholar
  12. 12.
    Yu. S. Balin, G. S. Bairashin, G. P. Kokhanenko, M.  G. Klemasheva, I. E. Penner, and S. V. Samoilova, “LOSA-M2 aerosol Raman lidar,” Qunatum Electron. 41 (10), 945–949 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    F. N. Alyea, D. M. Cunnold, and R. G. Prinn, “Meteorological constraints on tropospheric halocarbon and nitrous oxide destructions by siliceous land surfaces,” Atmos. Environ. 12 (5), 1009–1011 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    G. Toupance, “Mesure et comportement du pan dans l’atmosphere,” Pollut. Atmos. 33, Spec. Is., 142–150 (1991).Google Scholar
  15. 15.
    S. Kamm, O. Mohler, and K.-H. Naumann, “Heterogeneous interaction of ozone, NO2 and N2O5 with soot aerosol,” in Proc. of EUROTRAC Symposium-98 (1999), vol. 1, p. 649–655.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Zayakhanov
    • 1
  • G. S. Zhamsueva
    • 1
  • V. V. Tsydypov
    • 1
  • T. S. Balzhanov
    • 1
  • Yu. S. Balin
    • 2
    Email author
  • I. E. Penner
    • 2
  • G. P. Kokhanenko
    • 2
  • S. V. Nasonov
    • 2
  1. 1.Institute of Physical Material Science, Siberian Branch, Russian Academy of SciencesUlan-UdeRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations