Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 193–201 | Cite as

Comparison of Several Numerical Methods for Fog Prediction

  • G. A. ZarochentsevEmail author
  • K. G. Rubinstein
  • V. I. Bychkova
  • R. Yu. Ignatov
  • Yu. I. Yusupov
OPTICAL MODELS AND DATABASES
  • 2 Downloads

Abstract

Several methods for visibility calculation for fog forecasting are discussed, including a method suggested by the authors. We use the WRF-ARW model to obtain the necessary meteorological information. The forecasts are estimated using data with a high spatial resolution from European Synoptic stations. The analysis of the methods shows a generally satisfactory quality of forecasts for this phenomenon.

Keywords:

fog meteorological visibility mesoscale modeling transfer of moisture in the surface layer 

Notes

ACKNOWLEDGMENTS

The work was partly supported by the Russian Foundation for Basic Research (grant nos. 16-05-00704, 18-35-00044 mol_a, and 16-05-00822 a).

REFERENCES

  1. 1.
    S. P. Khromov and L. I. Mamontova, Meteorological Dictionary (Gidrometeoizdat, Leningrad, 1974) [in Russian].Google Scholar
  2. 2.
    L. T. Matveev, Atmospheric Physics (Gidrometeoizdat, Leningrad, 1965) [in Russian].Google Scholar
  3. 3.
    A. S. Zverev, Synoptical Meteorology (Gidrometeoizdat, Leningrad, 1977) [in Russian].Google Scholar
  4. 4.
    C. T. R. Wilson and J. J. Thomson, “Condensation of water vapour in the presence of dust-free air and other gases,” Proc. Roy. Soc., London 61 (369–377), 240–242 (1897).Google Scholar
  5. 5.
    S. Petersen, The Weather Analysis and Forecasting (Gidrometeoizdat, Leningrad, 1961) [in Russian].Google Scholar
  6. 6.
    M. A. Kohler and M. M. Richards, “Multicapacity basin accounting for predicting runoff from storm precipitation,” J. Geophys. Res. 67 (13), 5187–5197 (1962).ADSCrossRefGoogle Scholar
  7. 7.
    M. Neiburger and M. G. Wurtele, “On the nature and size of particles in haze, fog, and stratus of the Los Angeles region,” Chem. Rev. 44 (2), 321–335 (1949).CrossRefGoogle Scholar
  8. 8.
    J. J. George, Weather Forecasting for Aeronautics (Academic Press, London, 1960).Google Scholar
  9. 9.
    N. V. Petrenko, “Improvement of the technique for forecasting advective fog and visibility in this fog,” Tr. Gidromet. SSSR, Is. 162, 34–45 (1975).Google Scholar
  10. 10.
    L. A. Klyuchnikova, “About the advective fog formation,” Tr. GGO, No. 60, 122 (1956).Google Scholar
  11. 11.
    Z. E. Babenko, Avtoref. Candidate’s Dissertation in Geography (Middle Asian Regional Research Institute named after V.A. Bugaev, Tashkent, 1961).Google Scholar
  12. 12.
    H. Koschmieder, “Measurements of visibility at danzig,” Mon. Weather. Rev. 58 (11), 439–444 (1930).ADSCrossRefGoogle Scholar
  13. 13.
    H. G. Houghton and W. H. Radford, On the Measurement of Drop Size and Liquid Water Content in Fogs and Clouds (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Massachusetts, 1938).CrossRefGoogle Scholar
  14. 14.
    D. B. Meison, G. T. Nikanorova, and V. S. Protopopova, Physics of Clouds (Gidrometeoizdat, Leningrad, 1961) [in Russian].Google Scholar
  15. 15.
    C. H. Bang, J. W. Lee, and S. Y. Hong, “Predictability experiments of fog and visibility in local airports over Korea using the WRF model,” J. KOSAE 24 (E2), 92–101 (2008).Google Scholar
  16. 16.
    M. T. Stoelinga and T. T. Warner, “Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event,” J. Appl. Meteorol. 38 (4), 385–404 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    B. A. Kunkel, “Parameterization of droplet terminal velocity and extinction coefficient in fog models,” J. Clim. Appl. Meteorol. 23 (1), 34–41 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    S. A. Rutledge and P. Hobbs, “The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the "seeder-feeder” process in warm-frontal rainbands," J. Atmos. Sci. 40 (5), 1185–1206 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    J. R. Stallabrass, “Snow property measurement workshop,” in Proc. National Research Council Associate Committee on Geotechnical Research. Tech. memorandum (Canada, 1985), no. 140, p. 389–410Google Scholar
  20. 20.
    J. S. Marshall and W. M. Palmer, “The distribution of raindrops with size,” J. Meteorol. 5, 165–166 (1948).CrossRefGoogle Scholar
  21. 21.
    P. E. Bieringer, M. Donovan, F. Robasky, D. A. Clark, and J. Hurst, “A characterization of NWP ceiling and visibility forecasts for the terminal airspace,” in 12th Conf. Aviation, Range, and Aerospace Meteorology, Atlanta, GA, 2006.Google Scholar
  22. 22.
    F. Wantuch, “Visibility and fog forecasting based on decision tree method,” Idojárás 105, 29–38 (2001).Google Scholar
  23. 23.
    J. A. Doran, P. J. Roohr, D. J. Beberwyk, G. R. Brooks, G. A. Gayno, R. T. Williams, J. M. Lewis, and R. J. Lefevre, “The MM5 at the Air Force Weather Agency—New products to support military operations,” in 8th Conf. Aviation, Range, and Aerospace Meteorology, Dallas, Texas, 1999.Google Scholar
  24. 24.
    W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, A Description of the Advanced Research WRF Version 2. (Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA, 2005).  https://doi.org/10.5065/D68S4MVH Google Scholar
  25. 25.
    V. I. Bychkova, R. Yu. Ignatov, and K. G. Rubinshtein, “The analysis of thermal fluxes on surface from WRF-ARW model calculations in polar regions,” Uch. Zap. Ros. Gos. Gidromet. Univ., No. 20, 42–55 (2011).Google Scholar
  26. 26.
    M. M. Smirnova, Avtoref. Candidate’s Dissertation in Mathematics and Physics (Moscow State University, Moscow, 2014).Google Scholar
  27. 27.
    G. A. Grell, Y. H. Kuo, and R. J. Pasch, “Semiprognostic tests of cumulus parameterization schemes in the middle latitudes,” Mon. Weather. Rev. 119 (1), 5–31 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    J. A. Milbrandt and M. K. Yau, “A multimoment bulk microphysics parameterization Part I. A proposed three-moment closure and scheme description,” J. Atmos. Sci. 62 (9), 3065–3081 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    P. Bougeault and P. Lacarrere, “Parameterization of orography-induced turbulence in a mesobeta-scale model,” Mon. Weather. Rev. 117 (8), 1872–1890 (1989).ADSCrossRefGoogle Scholar
  30. 30.
    R. West, D. Crisp, and L. Chen, “Mapping transformations for broadband atmospheric radiation calculations,” J. Quant. Spectrosc. Radiat. Transfer 43 (3), 191–199 (1990).ADSCrossRefGoogle Scholar
  31. 31.
    M. B. Ek, K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, Gayno, and J. D. Tarpley, “Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model,” J. Geophys. Res.: Atmos. 108 (D22), 16 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. A. Zarochentsev
    • 1
    • 2
    • 3
    Email author
  • K. G. Rubinstein
    • 2
    • 3
  • V. I. Bychkova
    • 2
    • 3
  • R. Yu. Ignatov
    • 2
    • 3
  • Yu. I. Yusupov
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Hydrometeorological Centre of RussiaMoscowRussia
  3. 3.The Nuclear Safety Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations