Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 128–137 | Cite as

Variability in Parameters of the Near-Surface Aerosol Microstructure in Summer According to Results of Inversion of Measurements of Spectral Extinction of Light on a Horizontal Path in Tomsk: Part I–Geometrical Cross Section of Fine and Coarse Particles

  • V. V. VeretennikovEmail author
  • S. S. Men’shchikovaEmail author
  • V. N. UzhegovEmail author
OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES

Abstract

Results on retrieving parameters of the near-surface aerosol microstructure from spectral measurements of the coefficient of aerosol extinction of light in summer are presented. The experimental data have been obtained using an atmospheric transmittance meter at 11 wavelengths in the range 0.45–3.91 μm on a horizontal path near Tomsk. The inverse problem was solved using a numerical algorithm based on the integral distribution method. In the first part of the work, the variability of the geometrical cross section of particles from the fine fraction, coarse fraction, and total ensemble is analyzed. The effect of the smoke pollution of the atmosphere on variations in microstructure parameters has been considered. It has been shown that the main contribution (73–77%) to the total cross section of near-surface aerosol is made by particles of the fine fraction. Coefficients of variation in the cross sections of particles on monthly intervals without regard to the influence of smokes are high within 53–61% for the fine fraction and 53–69% for the coarse fraction of aerosol. The correlations between the aerosol extinction coefficients at different wavelengths and retrieved parameters of the aerosol microstructure have been studied.

Keywords:

aerosol extinction coefficient near-surface aerosol microstructure inverse problems 

Notes

REFERENCES

  1. 1.
    V. N. Uzhegov, D. M. Kabanov, Yu. A. Pkhalagov, and S. M. Sakerin, “Correlation between variations of aerosol extinction in visible and IR radiation in near-ground air layer and in the atmospheric column,” Atmos. Oceanic Opt. 22 (3), 338–345 (2009).CrossRefGoogle Scholar
  2. 2.
    V. N. Uzhegov, Yu. A. Pkhalagov, D. M. Kabanov, and S. M. Sakerin, “Coarse aerosol and its role in shaping the height of the homogeneous aerosol atmosphere,” Opt. Atmos. Okeana 25 (12), 1023–1027 (2012).Google Scholar
  3. 3.
    V. S. Kozlov, M. V. Panchenko, A. G. Tumakov, V. P. Shmargunov, and E. P. Yausheva, “Some peculiarities of the mutual variability of the content of soot and submicron aerosol in the near-ground air layer,” J. Aerosol Sci. 28 (1997).Google Scholar
  4. 4.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires,” Atmos. Ocean. Opt. 19 (6). 434–440 (2006).Google Scholar
  5. 5.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Time content variations of submicron aerosol and soot in the near-ground layer of the West Siberia atmosphere,” Atmos. Ocean. Opt. 20 (12). 987–990 (2007).Google Scholar
  6. 6.
    E. P. Yausheva, M. V. Panchenko, V. S. Kozlov, S. A. Terpugova, and D. G. Chernov, “The influence of the city on the atmospheric aerosol characteristics in Tomsk Akademgorodok in transitional seasons,” Opt. Atmos. Okeana 27 (11), 981–988 (2014).Google Scholar
  7. 7.
    E. P. Yausheva, V. S. Kozlov, M. V. Panchenko, and V. P. Shmargunov, “Long-term variability of aerosol and black carbon concentrations in the atmospheric surface layer as results of 20-years measurements at the IAO aerosol station,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, 10466 3I (2017).Google Scholar
  8. 8.
    A. A. Isakov and A. N. Gruzdev, “Long-period variations in the optical and microphysical parameters of surface aerosol in a Moscow suburb,” Izv., Atmos. Ocean. Phys. 45 (2), 233–241 (2009).CrossRefGoogle Scholar
  9. 9.
    E. V. Makienko, Yu. A. Pkhalagov, R. F. Rakhimov, V. N. Uzhegov, and N. N. Shchelkanov, “Analysis of microstructure features of the winter haze aerosol using the results of optical measurement data inversion,” Atmos. Ocean. Opt. 8 (9). 1272–1279 (1995).Google Scholar
  10. 10.
    E. V. Makienko, R. F. Rakhimov, Yu. A. Pkhalagov, and V. N. “Microphysical interpretation of the anomalous spectral behavior of aerosol extinction along a ground path,” Atmos. Ocean. Opt. 16 (12). 1008–1012 (2003).Google Scholar
  11. 11.
    V. V. Veretennikov and S. S. Men’shchikova, “Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part I. Technique for solving the inverse problem,” Atmos. Ocean. Opt. 26 (6), 473–479 (2013).CrossRefGoogle Scholar
  12. 12.
    V. V. Veretennikov and S. S. Men’shchikova, “Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part II. Inversion results,” Atmos. Ocean. Opt. 26 (6), 480–491 (2013).CrossRefGoogle Scholar
  13. 13.
    V. V. Veretennikov, S. S. Men’shchikova, and V. N. Uzhegov, “Variability in parameters of the near-surface aerosol microstructure in summer according to results of inversion of measurements of spectral extinction of light on a horizontal path in Tomsk: Part II–Volume concentration and mean radius of particles,” Atmos. Ocean. Opt. 32 (2), 138–146 (2019).Google Scholar
  14. 14.
    http://climatechange.igce.ru/index.php?option=com_ content&task=view&id=43. Cited April 24, 2018.Google Scholar
  15. 15.
    http://thermograph.ru/mon/st_29430-y_2003.htm. Cited April 24, 2018.Google Scholar
  16. 16.
    B. D. Belan, T. M. Rasskazchikova, and T. K. Sklyadneva, “Synoptic pattern in Tomsk since 1993 until 2004,” Atmos. Ocean. Opt. 18 (10), 796–801 (2005).Google Scholar
  17. 17.
    B. D. Belan, G. A. Ivlev, and T. K. Sklyadneva, “Long-term monitoring of total and UV-B radiation in Tomsk,” Atmos. Oceanic Opt. 25 (4), 281–285 (2012).CrossRefGoogle Scholar
  18. 18.
    T. K. Sklyadneva, T. M. Rasskazchikova, V. G. Arshinova, and M. Yu. Arshinov, “Changes in radiation and meteorological parameters of the atmosphere from observation data in Tomsk,” Opt. Atmos. Okeana 31 (4), 288–293 (2018).Google Scholar
  19. 19.
    B. D. Belan, G. O. Zadde, A. I. Kuskov, and T. M. Rasskazchikova, “Spectral transmittance of the atmosphere of basic synoptic objects,” Atmos. Oceanic Opt. 7 (9). 640–645 (1994).Google Scholar
  20. 20.
    Yu. A. Pkhalagov, V. N. Uzhegov, and N. N. Shchelkanov, “Automated multiwave meter of spectral transmission of the ground layer of the atmosphere,” Atmos. Oceanic Opt. 5 (6), 423–425 (1992).Google Scholar
  21. 21.
    A. I. Kobzar’, Applied Mathematical Statistics. For Engineers and Researchers (Fizmatlit, Moscow, 2006) [in Russian].Google Scholar
  22. 22.
    http://lop.iao.ru/activity/?id=tor. Cited April 24, 2018.Google Scholar
  23. 23.
    V.E. Zuev and G.M. Krekov, Optical Models of Atmosphere (Gidrometeoizdat, Leningrad 1986) [in Russian].Google Scholar
  24. 24.
    G.M. Krekov and R.F. Rakhimov, Optical-Ranging Model of Continental Aerosol (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  25. 25.
    Chemistry of the Lower Atmosphere, Ed. by S. Rasul (Mir, Moscow, 1976) [in Russian].Google Scholar
  26. 26.
    P. Reist, Introduction to Aerosol Science (MacMillan Publishing, 1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations