Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 207–212 | Cite as

Aeroptical Effects Caused by Supersonic Airflow around an Ogival Body

  • A. A. SukharevEmail author
OPTICAL INSTRUMENTATION
  • 5 Downloads

Abstract

An optical model of a shock wave generated due to supersonic airflow around a body of an ogival form is developed. Mean values of airflow parameters were calculated from the Navier–Stokes equations using the CFD Fluent 6.0 software package accounting for the gas compressibility. It is shown that the maximum values of the structure parameters are several orders of magnitude larger than the values typical for an unperturbed shock wave in the atmosphere. Results of numerical simulation of propagation of an optical beam which crosses the shock wave at the beginning of a path and then propagates through a homogeneous medium are presented. It is shown that an increase in the aircraft speed increases the transverse dimensions of the beam due to diffraction. The angular deviation of the beam from rectilinear propagation under the impact of the shock wave depends only on the altitude above the Earth’s surface where the shock wave is generated. The impact of the shock wave on the crossing beam weakens as the altitude increases.

Keywords:

ogival body mean intensity homogeneous medium 

Notes

ACKNOWLEDGMENTS

The work was supported by the President of the Russian Federation (grant no. MK-1366.2017.8).

REFERENCES

  1. 1.
    V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Diffraction of the optical beam on a shock wave in the vicinity of a supersonic aircraft,” Opt. Atmos. Okeana 26 (11), 932–941 (2013).Google Scholar
  2. 2.
    A. A. Sukharev and A. V. Falits, “Focusing and deviation from the rectilinear direction of propagation of the optical beam crossing a shock wave at the beginning of a path in a homogeneous medium,” Izv. Vyssh. Ucheb. Zaved., Fiz., No. 8/3, 350–352 (2013).Google Scholar
  3. 3.
    V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Optical beam distortions induced by a shock wave,” Appl. Opt. 54 (8), 2023–2031 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Manifestation of aero-optical effects in a turbulent atmosphere in supersonic motion of a conical body,” Atmos. Ocean. Opt. 28 (1), 24–33 (2015).CrossRefGoogle Scholar
  5. 5.
    A. A. Sukharev and A. V. Falits, “Distribution of the optical beam mean intensity and propagation direction during propagation of a shock wave generated by an aircraft moving through the atmosphere with a hypersonic speed,” Izv. Vyssh. Ucheb. Zaved., Fiz., No. 8/2, 198–200 (2012).Google Scholar
  6. 6.
    A. A. Sukharev and A. V. Falits, “Definition of the boundaries of prevailing influence of shock waves on optical beam propagating in a turbulent atmosphere,” Izv. Vyssh. Ucheb. Zaved., Fiz., No. 8/3, 353–355 (2013).Google Scholar
  7. 7.
    V. A. Banakh and A. A. Sukharev, “Laser beam distortions caused by a shock wave near the turret of a supersonic aircraft,” Atmos. Ocean. Opt. 29 (3), 225–233 (2016).CrossRefGoogle Scholar
  8. 8.
    V. A. Banakh and A. A. Sukharev, “Contribution of atmospheric turbulence in distortions of laser beams caused by a shock wave arising at the supersonic flowing the turret,” Opt. Atmos. Okeana 29 (4), 257–262 (2016).Google Scholar
  9. 9.
    E. Frumker and O. Pade, “Generic method for aero-optic evaluations,” Appl. Opt. 43 (16), 3224–3228 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    O. Pade, “Propagation through shear layers,” Proc. SPIE–Int. Soc. Opt. Eng. 6364, 63640 (2006).Google Scholar
  11. 11.
    K. N. Volkov and V. N. Emel’yanov, “Aerooptic effects in a turbulent flow and their simulation,” Tech. Phys. Rus. J. Appl. Phys. 53 (2) 217–223 (2008).Google Scholar
  12. 12.
    M. Henriksson, L. Sjoqvist, and C. Fureby, “Numerical laser beam propagation using large eddy simulation of a jet engine flow field,” Opt. Eng. 54 (8), 085101 (2015).  https://doi.org/10.1117/1.OE.54.8.085101 CrossRefGoogle Scholar
  13. 13.
    M. Henriksson, Ch. Eisele, D. Seiffer, L. Sjoqvist, F. Togna, and M.-Th. Velluet, “Airborne platform effects on lasers and warning sensors,” Proc. SPIE–Int. Soc. Opt. Eng. 10435 (2017).Google Scholar
  14. 14.
    L. Bo and L. Hong, “Aero-optical characteristics of supersonic flow over blunt wedge with cavity window,” J. Shanghai Jiaotong Univ. 16 (6), 742–749 (2011).CrossRefGoogle Scholar
  15. 15.
    L. Xu and Y. Cai, “Influence of altitude on aero-optic imaging deviation,” Appl. Opt. 50 (18), 2949–2957 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    M. Wang, A. Mani, and S. Gordeev, “Physics and computation of aero-optics,” Annu. Rev. Fluid Mech. 44, 299–321 (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Q. Gao, S. H. Yi, Z. F. Jiang, L. He, and Y. X. Zhao, “hierarchical structure of the optical path length of the supersonic turbulent boundary layer,” Opt. Express 20, 16494–16503 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965), Part 1 [in Russian].Google Scholar
  19. 19.
    D. C. Wilcox, Turbulence modeling for CFD (DCW Industries, La Canada, California, 2006).Google Scholar
  20. 20.
    V. A. Banakh, D. A. Marakasov, and A. A. Sukharev, “Reconstruction of the structural characteristic of the refractive index and average air density in a shock wave arising in a supersonic flow past obstacles from optical measurements,” Opt. Spectrosc. 111 (6), 967–972 (2011).CrossRefGoogle Scholar
  21. 21.
    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1967), Part 2 [in Russian].Google Scholar
  22. 22.
    A. J. Smits and J.-P. Dussauge, Turbulent Shear Layers in Supersonic Flow (AIP Press, New York, 1996).Google Scholar
  23. 23.
    A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].Google Scholar
  24. 24.
    K. Wang and M. Wang, “Aero-optics of subsonic turbulent boundary layers,” J. Fluid Mech. 696, 122–151 (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Q. Gao, S. H. Yi, Z. F. Jiang, L. He, and Wang Xi, “Structure of the refractive index distribution of the supersonic turbulent boundary layer,” Opt. Lasers Engin. 51 (9), 1113–1119 (2013).CrossRefGoogle Scholar
  26. 26.
    V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of a Turbulent Atmosphere. Modern Problems of Atmospheric Optics (Gidrometeoizdat, Leningrad, 1988), vol. 5 [in Russian].Google Scholar
  27. 27.
    V. P. Kandidov, “Monte Karlo method in nonlinear statistical optics,” Phys.-Uspekhi 39 (12), 1243–1272 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations