Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 171–176 | Cite as

Change in the Synoptic Regime of Tomsk in the Late 20th–Early 21st Centuries

  • T. K. Sklyadneva
  • B. D. BelanEmail author
  • T. M. Rasskazchikova
  • V. G. Arshinova
ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • 8 Downloads

Abstract

Synoptic processes that occurred in the Tomsk region between 1993 and 2016 are analyzed. A significant decrease in the difference between the frequency of cyclones and anticyclones over the past decade is revealed. There are tendencies to a decrease in the frequency of Arctic air mass invasion, and to an increase, of subtropical and tropical air masses.

Keywords:

synoptic process cyclone anticyclone air mass 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (grant no. 17-17-01095).

REFERENCES

  1. 1.
    M. Burke, W. M. Davis, and N. S. Diffenbaugh, “Large potential reduction in economic damages under UN mitigation targets,” Nature 557 (7706), 549–553 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Cambridge, United Kingdom; New York, USA: Cambridge University Press, 2007).Google Scholar
  3. 3.
    Climate change 2013: The Physical Science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Cambridge, United Kingdom; New York, USA: Cambridge University Press, 2013).Google Scholar
  4. 4.
    C. Liu, “Severe weather in a warming climate,” Nature 544 (7651), 422–423 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    A. M. Siepielski, M. B. Morrissey, M. Buoro, S. M. Carlson, C. M. Caruso, S. M. Clegg, T. Coulson, J. DiBattista, K. M. Gotanda, C. D. Francis, J. Hereford, J. G. Kingsolver, K. E. Augustine, L. E. B. Kruuk, R. A. Martin, B. C. Sheldon, N. Sletvold, E. I. Svensson, M. J. Wade, and A. D. C. MacColl, “Precipitation drives global variation in natural selection,” Science 355 (6328), 959–962 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    The Second Estimation Report of Rosgidromet on the Climate Changes and their Consequences on the Territory of the Russian Federation (Rosgidromet, Moscow, 2014) [in Russian].Google Scholar
  7. 7.
    D. Coumou, J. Lehmann, and J. Beckmann, “The weakening summer circulation in the Northern hemisphere mid-latitudes,” Science 348 (6232), 324–327 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Popova, “Present-day changes in climate in the north of eurasia as a manifestation of variation of the large-scale atmospheric circulation,” Fundam. Prikl. Klimatol., No. 1, 84–111 (2018).Google Scholar
  9. 9.
    N. K. Kononova, “Changes in the northern hemisphere atmospheric circulation in the 20th–21st centuries and their consequences for climate,” Fundam. Prikl. Klimatol., No. 1, 133–162 (2015).Google Scholar
  10. 10.
    O. Yu. Antokhina, P. N. Antokhin, E. V. Devyatova, and O. S. Zorkal’tseva, “Atmospheric blockings in Western Siberia. Part 1. Detection features, objective criteria, and their comparison,” Rus. Meteorol. Hydrol. 42 (10), 644–652 (2017).CrossRefGoogle Scholar
  11. 11.
    O. Yu. Antokhina, P. N. Antokhin, E. V. Devyatova, and Yu. V. Martynova, “Atmospheric blockings in Western Siberia. Part 2. Long-term variations in blocking frequency and their relation with climatic variability over Asia,” Rus. Meteorol. Hydrol., No. 3, 143–151 (2018).Google Scholar
  12. 12.
    K. J. Rennert and J. M. Wallace, “Cross-frequency coupling, skewness and blocking in the Northern hemisphere winter circulation,” J. Clim. 22, 5650–5666 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47 (6), 653–660 (2011).CrossRefGoogle Scholar
  14. 14.
    H. N. Cheung, W. Zhou, H. Y. Mok, M. C. Wu, and Y. Shao, “Revisiting the climatology of atmospheric blocking in the Northern hemisphere,” Adv. Atmos. Sci. 30 (2), 397–410 (2013).CrossRefGoogle Scholar
  15. 15.
    D. Barriopedro, R. Garcia-Herrera, A. R. Lupo, and E. Hernandez, “A climatology of Northern hemisphere blocking,” J. Clim. 19, 1042–1063 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    M. Yu. Bardin, T. V. Platova, and O. F. Samokhina, “Specific features of variability of cyclone activity in northern extratropics associated with leading atmospheric circulation modes in Atlantic-European sector,” Fundam. Prikl. Klimatol., No. 2, 14–40 (2015).Google Scholar
  17. 17.
    M. P. King, F. Kucharski, and F. Molteni, “The roles of external forcings and internal variabilities in the Northern hemisphere atmospheric circulation change from the 1960s to the 1990s,” J. Clim. 23, 6200–6220 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. K. Sklyadneva
    • 1
  • B. D. Belan
    • 1
    Email author
  • T. M. Rasskazchikova
    • 1
  • V. G. Arshinova
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations