Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 220–226 | Cite as

Low-Temperature Cell for Studying Absorption Spectra of Greenhouse Gases

  • V. I. Serdyukov
  • L. N. SinitsaEmail author
  • A. A. Lugovskoi
  • N. M. Emelyanov


A low temperature vacuum cell 220 cm in length with windows of quartz, ZnSe, and KBr has been designed for working with the high resolution Bruker IFS 125-M Fourier spectrometer. It provides a threshold sensitivity to absorption on the order of 10–7 cm–1, and allows recording absorption spectra of gases in the temperature range from 200 to 296 K in the region 1000–20 000 cm–1 with an accuracy of 0.9 K.


Fourier spectroscopy absorption spectrum methane 



This work was financially supported by the Russian Science Foundation (grant no. 17-17-01170).


  1. 1.
    P. Warneck, Chemistry of the Natural Atmosphere (Academic Press, San Diego, 1988).Google Scholar
  2. 2.
    E. Sepulveda, M. Schneider, and F. Hase, “Long-term validation of tropospheric column-averaged CH4 mole fractions obtained by mid-infrared ground-based FTIR spectrometry,” Atmos. Meas. Tech. 5, 1425–1441 (2012).CrossRefGoogle Scholar
  3. 3.
    P. J. Crutzen, Geophysiology of Amazonia: Vegetation and Climate Interactions (Wiley, New York, 1987).Google Scholar
  4. 4.
    R. Goody, “Atmospheres of major planets,” J. Atmos. Sci. 26, 997–1001 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    M. Combes, C. D. Bergh, J. Lecacheus, and J. P. Maillard, “Identification of 13CH4 in atmosphere of Saturn,” Astron. Astrophys. 40, 81–84 (1975).ADSGoogle Scholar
  6. 6.
    G. L. Bjoraker and D. E. Jennings, “Detection of 13CH4 in Jupiter atmosphere,” Astrophys. J. 383, 29–32 (1991).CrossRefGoogle Scholar
  7. 7.
    T. Encrenaz, “Remote sensing analysis of solar-system objects,” Phys. Scr. 130, 014037 (2008).CrossRefGoogle Scholar
  8. 8.
    R. M. Goody and Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford University Press, New York, 1995 (University Press Inc, Oxford, 1995).Google Scholar
  9. 9.
    K. Sung, A. W. Mantz, and M. A. H. Smith, “Cryogenic absorption cells operating inside a Bruker IFS 125HR: First results for 13CH4 at 7 μm,” J. Mol. Spectrosc. 262, 122–134 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    A. W. Mantz, K. Sung, and L. R. Brown, “A cryogenic Herriott cell vacuum-coupled to a Bruker IFS 25HR,” J. Mol. Spectrosc. 304, 12–24 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    D. E. Jennings and J. J. Hillman, “shock isolator for diode-laser operations on a closed-cycle refrigerator,” Rev. Sci. Instrum. 48, 1568–1569 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    A. W. Mantz, D. V. Malathy, D. C. Benner, M. A. H. Smith, A. Predoi-Cross, and M. Dulick, “A multispectrum analysis of widths and shifts in the 2010–2260 cm–1 region of 12C16O broadened by Helium at temperatures between 80–297 K,” J. Mol. Struct. 742, 99–110 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    S. Kassi, B. Gao, D. Romanini, and A. Campargue, “The near infrared (1.30–1.70 mm) absorption spectrum of methane down to 77 K,” Phys. Chem. Chem. Phys. 10, 4410–9 (2008).CrossRefGoogle Scholar
  14. 14.
    A. Campargue, Le. Wang, S. Kassi, M. Masat, and O. Votava, “Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (II) The icosad region (1.49–1.30 μm),” J. Quant. Spectrosc. Radiat. Transfer 111, 1141–1151 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    J. S. Margolis and K. Fox, “Infrared absorption spectrum of CH4 at 9050 cm–1,” J. Chem. Phys. 49, 2451–2452 (1968).ADSCrossRefGoogle Scholar
  16. 16.
    J. P. Maillard, M. Combes, Th. Encrenaz, and J. Lecacheux, “New infrared spectra of the Jovian planets from 12 000 to 4000 cm by Fourier transform spectroscopy,” Astrophys. J. 25, 219–232 (1973).ADSGoogle Scholar
  17. 17.
    L. N. Sinitsa, Dissertation in Mathematics and Physics (Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, 1988).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. I. Serdyukov
    • 1
  • L. N. Sinitsa
    • 1
    Email author
  • A. A. Lugovskoi
    • 1
  • N. M. Emelyanov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations