Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 574–581 | Cite as

Changes in the Multilayer Dielectric Coating Reflection Coefficient under Variation in the Medium Humidity

  • L. N. SinitsaEmail author
  • A. A. Lugovskoi
  • V. I. Serdyukov
  • M. Yu. Arshinov
Spectroscopy of Ambient Medium


It is found that the reflection coefficient of multilayer dielectric mirrors strongly depends on the medium (gas) humidity. This effect can result in both an increase and decrease in the reflection coefficient, which is determined by a change in the refractive indices of the dielectric layers (when filling with water vapor). The mirror reflection coefficient can increase up to 0.9% in a gas with the humidity close to the dew point. Changes in the reflection coefficient of a mirror in gaseous media which contain different water vapor isotopes (H216O, H218O, and D2O) are studied. Mirrors of a CRDS spectrometer with the reflection coefficient R = 0.9999 are studied and the upper bound of the variation in the reflection coefficient versus air humidity is estimated.


water reflection coefficient dielectric mirrors nanopores 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Godlevskii, Doctoral Dissertation in Mathematics and Physics (Tomsk State Univ., Tomsk, 1981).Google Scholar
  2. 2.
    D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, 381–391 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    M. Yu. Tretyakov, A. F. Krupnov, M. A. Koshelev, D. S. Makarov, E. A. Serov, and V. V. Parshin, “Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range,” Rev. Sci. Instrum. 80, 093106 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Koshelev, E. A. Serov, V. V. Parshin, and M. Yu. Tretyakov, “Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328K,” J. Quant. Spectrosc. Radiat. Transfer 112, 2704–2712 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    D. Mondelain, S. Manigand, S. Kassi, and A. Campargue, “Temperature dependence of the water vapor selfcontinuum by cavity ring-down spectroscopy in the 1.6 μm transparency window,” J. Geophys. Res.: Atmos. 119, 5625–5639 (2014).ADSGoogle Scholar
  6. 6.
    V. I. Serdyukov, L. N. Sinitsa, and A. A. Lugovskoi, “Influence of gas humidity on the reflection coefficient of multilayer dielectric mirrors,” Appl. Opt. 55 (17), 4763 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    Auwera J. Vander, N. H. Ngo, H. El Hamzaoui, B. Capoen, M. Bouazaoui, P. Ausset, C. Boulet, and J.-M. Hartmann, “Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results,” Phys. Rev., A 88, 042506 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    H. J. Bernstein and G. Herzberg, “Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths. I. The spectrum of fluoroform (CHF3) from 2.4 μ to 0.7 μ,” J. Chem. Phys. 16, 30–39 (1948).ADSCrossRefGoogle Scholar
  10. 10.
    V. I. Serdyukov, L. N. Sinitsa, S. S. Vasil’chenko, and B. A. Voronin, “High-sensitive Fourier-transform spectroscopy with short-base multipass absorption cells,” Atmos. Ocean. Opt. 26, 329–336 (2013).CrossRefGoogle Scholar
  11. 11.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, BennerD. Chris, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R.Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour selfcontinuum and water dimers: 1. Analysis of recent work,” Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    I. V. Ptashnik, T. M. Petrova, Y. N. Ponomarev, A. A. Solodov, A. M. Solodov, and K. P. Shine, “Nearinfrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders and Porous Solids. Principles, Methodology and Applications (Academic Press, London, 1999).Google Scholar
  15. 15.
    L. N. Sinitsa and A. A. Lugovskoy, “Dynamic registration of the absorption spectrum of water in the SiO2 nanopores in high frequency range,” J. Chem. Phys. 133, 204506 (1–5) (2010).Google Scholar
  16. 16.
    I. Kishenbaum, Heavy Water: Physical Properties and Methods for the Analysis (Moscow, 1953) [in Russian].Google Scholar
  17. 17.
    A. I. Shatenshtein, Isotope Analysis of Water (Publishing House of Akademy of Sciences of USSR, Moscow, 1957) [in Russian].Google Scholar
  18. 18.
    W. Demtroder, Laser Spectroscopy: Experimental Techniques (Springer, Heildelberg, Berlin, 2008), 4th ed.Google Scholar
  19. 19.
    L. N. Sinitsa, V. I. Serdyukov, A. F. Danilyuk, and A.A. Lugovskoi, “Observation of water dimers in nanopores of silicon aerogel,” J. Exp. Theor. Phys. Lett. 102, 32–35 (2015).CrossRefGoogle Scholar
  20. 20.
    H. Nara, H. Tanimoto, Y. Tohjima, H. Mukai, Y. Nojiri, K. Katsumata, and C. W. Rella, “Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: Calibration and measurement strategy,” Atmos. Meas. Tech. 5, 2689–2701 (2012).CrossRefGoogle Scholar
  21. 21.
    L. Rosenmann, J. M. Hartmann, M. Y. Perrin, and J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the300–2400-K temperature range,” Appl. Opt. 27 (18), 3902–3907 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    L. Rosenmann, M. Y. Perrin, J. M. Hartmann, and J. Taine, “Diode-laser measurements and calculations of CO2-line-broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” J. Quant. Spectrosc. Radiat. Transfer 40 (5), 569–516 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. N. Sinitsa
    • 1
    Email author
  • A. A. Lugovskoi
    • 1
  • V. I. Serdyukov
    • 1
  • M. Yu. Arshinov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations