Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 650–655 | Cite as

Remote Sensing of Lower Tropospheric Aerosols and Clouds over Islamabad Region Using a Self-Engineered Mie Scattering Lidar

  • G. RazaEmail author
  • M. A. Ashraf
  • Shakir H. Qureshi
  • N. Yasmin
  • N. Sarwar
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface


Atmospheric changes in the lower troposphere have been remotely studied using a self-engineered Mie scattering lidar with special emphasis on aerosols and clouds profiling over Islamabad region in Pakistan. The lidar is based on a Nd:YAG laser operating at 1064 nm, with maximal energy of 350 mJ at 20-Hz repetition rate and 5-ns pulse length. A silicon avalanche photodiode (Si-APD, C30950E) module is used as a detector. A higher resolution of the lidar revealed time evolution of thermal transport phenomena in the convective boundary layer. Regions of incessant wind speed, temperature, and particulates concentration have been detected through band-like structures at altitudes above 900 m. Strong backscattering (β) and extinction (α) due to a partially invisible thin cloud layer falling in the field-of-view of the lidar beyond 4 km have been identified.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. J. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols in climate system,” Nature 419, 215–219 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    A. J. Pope, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski Kazuhikoto, and G. D. Thurston, “Lung cancer, cardiopulmonary and long term exposure to fine particulates air pollution,” J. Am. Med. Assoc. 287 (9), 1132–1141 (2002). doi 287.9.1132CrossRefGoogle Scholar
  3. 3.
    A. I. Grishin and A. V. Kryuchkov, “Lidar observations of atmospheric optical characteristics during Sichuan earthquake,” Atmos. Ocean. Opt. 3 (31), 269–272 (2018).CrossRefGoogle Scholar
  4. 4.
    F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosols height distribution by lidar,” J. Appl. Meteorol. 11, 483–484 (1972).CrossRefGoogle Scholar
  5. 5.
    J. D. Klett, “Lidar inversion with variable backscatter and extinction ratios,” Appl. Opt. 24 (11), 1638–1639 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20 (2), 211–212 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    K. Sassen and R. L. Petrilla, “Lidar depolarization from multiple scattering in marine stratus clouds,” Appl. Opt. 25 (9), 1450–1459 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Young, “Analysis of lidar back scatter profiles in optically thin clouds,” Appl. Opt. 34 (30), 7019–7022 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    V.A. Kovalev and W.E. Eichinger, Elastic Lidar: Theory, Practice and Analysis methods (Wiley, Hoboken NJ, 2004).CrossRefGoogle Scholar
  10. 10.
    C. Weitkamp, Lidar Range Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).Google Scholar
  11. 11.
    Ruangrungrote, “Modelling of aerosol parameters retrieval algorithm based on Mie scattering lidar,” APRA KMITL. Sci. Tech. J. 1 (10) (2010).Google Scholar
  12. 12.
    H. Li, Y. Yang, X. Hu, Z. Huang, G. Wang, and B. T. Zhang, “Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data,” J. Geophys. Res. 122 (8), 4578–4593 (2017).Google Scholar
  13. 13.
    M. Mao, W. Jiang, J. Gu, C. Xie, and J. Zhou, “Study on mixed layer, entrainment zone and cloud feedback based on lidar exploration of Nanjing city,” J. Geophys. Res. Lett. 36, L04808 (2009).Google Scholar
  14. 14.
    G. P. Kokhanenko, Yu. S. Balin, M. G. Klemasheva, I. E. Penner, S. V. Samoilova, S. A. Terpugova, V. A. Banakh, I. N. Smalikho, A. V. Falits, T. M. Rasskazchikova, P. N. Antokhin, M. Yu. Arshinov, B.D. Belan, and S. B. Belan, “Structure of aerosol fields of atmospheric boundary layer according to aerosol and Doppler lidar data during passage of atmospheric fronts,” Atmos. Ocean. Opt. 1 (36), 18–32 (2017).CrossRefGoogle Scholar
  15. 15.
    F. G. Fernald, “Analysis of atmospheric lidar observations: Some comments,” Appl. Opt. 23 (5), 652–653 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    M. Posyniak, T. Stacewicz, M. Miernecki, A. K. Jagodnicka, and S. P. Malinowski, “Multiwavelength micro pulse lidar for atmosphere aerosol investigation,” Optica Applicata 40 (3), 623–632 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. Raza
    • 1
    • 2
    Email author
  • M. A. Ashraf
    • 2
  • Shakir H. Qureshi
    • 1
  • N. Yasmin
    • 1
  • N. Sarwar
    • 1
  1. 1.National Institute of Laser and Optronics (NILOP)IslamabadPakistan
  2. 2.Department of ElectronicsQuaid i Azam UniversityIslamabadPakistan

Personalised recommendations