Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 670–677 | Cite as

Intensity Variations of OI 557.7 nm and OI 630.0 nm Lines before M5.0 and Greater Earthquakes in Tokyo Region, Japan, in 1979 to 1990

  • P. K. GoleEmail author
  • S. K. Midya
  • P. Panda
  • A. Nandi
Atmospheric Radiation, Optical Weather, and Climate


The intensity variation of 557.7 nm oxygen green line and 630.0 nm oxygen red line at Kiso observatory, Tokyo, and variations in critical frequency of the ionospheric F2 layer (foF2) and semi transparency coefficient related to the E layer before earthquakes with magnitude ≥ 5 are considered for 1979 to 1990. The intensity of both the lines increases within six days before earthquakes; foF2 and semi transparency coefficient abnormally increase before enhancement of airglow. The superposed epoch analysis of each variable is done for further confirmation. Some physical processes in atmosphere-ionosphere in pre-seismic days enhance the concentration of electron and neutral molecules in the ionospheric F and E regions. These events influence the dissociative recombination processes related to oxygen emission, and so the intensity of two line emissions show some special type of variations during earthquake events.


oxygen airglow intensity Kiso observatory critical frequency ionospheric F2 layer semi transparency coefficient Kp index earthquake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bath, Physics and Chemistry of the Earth (Pergamon Press, New York, 1966).Google Scholar
  2. 2.
    S.K. Midya and P.K. Gole, “Trend of major earthquakes during the period 1900–2011 and its association with some solar and geomagnetic parameters,” Indian J. Phys. 88 (1), 1–4 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    S. Dey and R. Singh, “Surface latent heat flux as an earthquake precursor,” Nat. Hazards Earth Syst. Sci. 3, 749–755 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    G. Cervone, S. Maekawa, R.P. Singh, M. Hayakawa, M. Kafatos, and A. Shvets, “Surface latent heat flux and nighttime LF anomalies prior to the Mw = 8.3 Tokachi-Oki earthquake,” Nat. Hazards Earth Syst. Sci. 6, 109–114 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    M. Kafatos, D. Ouzounov, S. Pulinets, G. Cervone, and R. Singh, “Energies associated with the Sumatra earthquakes of December 26, 2004 and March 28, 2005,” in AGU Fall Meeting (San Francisco, 2007).Google Scholar
  6. 6.
    S.K. Midya, A.K. Dutta, and P. Panda, “Association of major earthquakes (magnitude ≥ 6 Richter scale) with geomagnetic activity index Kp during the period 2001–2007,” Mausam 62 (2), 245–252 (2011).Google Scholar
  7. 7.
    G.Q. Zhang, “Relationship between global seismicity and solar activities,” Acta Seismologica Sinica 11 (4), 495–500 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    S.K. Midya, A. Das, and N. Karmakar, “Association of occurrence of major earthquakes throughout the globe with variable component of the green line Fe XIV 530.3 nm during 1950–2014,” Indian J. Phys. 90 (12), 1–5 (2016). doi 10.1007/s12648–016–0875–0CrossRefGoogle Scholar
  9. 9.
    S. Mukherjee, “Cosmic influences on the sun-earth environment,” Sensors 8 (12), 7736–7752 (2008).CrossRefGoogle Scholar
  10. 10.
    N.D. Ganguly, “Variation of atmospheric ozone concentration following strong earthquake,” Int. J. Remote Sens. 30 (2), 349–356 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    S.K. Chakrabarty, M. Saha, R. Khan, S. Mandal, K. Acharyya, and R. Saha, “Possible detection of ionospheric disturbances during the Sumatra-Andaman islands earthquakes of December 2004,” Indian J. Radio Space Phys. 34 (5), 314–318 (2005).Google Scholar
  12. 12.
    S.S. De, B. Bandyopadhyay, T.K. Das, S. Paul, D.K. Haldar, B.K. De, S. Barui, M. Sanfui, P. Pal, and G. Chattopadhyay, “Studies on the anomalies in the behaviour of transmitted subionospheric VLF electromagnetic signals and the changes in the fourth schumann resonance mode as signature of two pending earthquakes,” Indian J.Phys. 85 (3), 447–470 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    S. Ray, S.K. Chakrabarty, and S. Sasmal, “Precursory effects in night time VLF signal amplitude for the 18th January 2011 Pakistan earthquake,” Indian J. Phys. 86, 85–88 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    S. Sasmal, S.K. Chakrabarty, and S. Ray, “Unusual behaviour of very low frequency signal during the earthquake at Honsu/Japan on 11 March, 2011,” Indian J. Phys. 88, 1013–1019 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    O.A. Molanchov, M. Hayakawa, T. Ondoh, and E. Kawai, “Precursory effects in the subionospheric VLF signals for the Kobe earthquake,” Phys. Earth Planet. Inter. 105, 239–248 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    E.V. Liperovsky, A.S. Silina, A. Saidshoev, V.A. Liperovsky, C.V. Meister, and N.E. Sasileva, “On the effect of spread-Es of night sporadic layers,” Geomagn. Aeron. 40 (1), 112–114 (2000).Google Scholar
  17. 17.
    S.A. Pulinets, K.A. Boyarchuk, V.V. Hegai, V.P. Kim, and A.M. Lomonosov, “Quasi electrostatic model of atmosphere-thermosphere-ionosphere coupling,” Adv. Space Res. 26, 1209–1218 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    S.K. Jain, G. Panda, and S.K. Vijay, “Study of variation of slab thickness of ionospheric F region during earthquake by wavelet analysis,” Indian J. Phys. 84, 359–365 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    J.Y. Liu, Y.I. Chen, S.A. Pulinets, Y.B. Tsai, and Y.J. Chuo, “Seismo-ionospheric signatures prior to M ≥ 6.0 Taiwan earthquakes,” Geophys. Res. Lett. 27, 3113–3116 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    S. Ghosh, S. Sasmal, S.K. Midya, and S.K. Chakrabarti, “Unusual change in critical frequency of F2 layer during and prior to earthquakes,” Open J. Earthquake Res. 6, 191–203 (2017).CrossRefGoogle Scholar
  21. 21.
    J.Y. Liu, Y.J. Chuo, S.J. Shan, Y.B. Tsai, Y.I. Chen, S.A. Pulinets, and S.B. Yu, “Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements,” Ann. Geophys. 22, 1585–1593 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    M. Devi, A.K. Barbara, and A. Depueva, “Association of Total Electron Content (TEC) and foF2 variations with earthquake events at the anomaly crest region,” Ann. Geophys. 47, 83–91 (2004).Google Scholar
  23. 23.
    A. Trigunait, M. Parrot, S. Pulinets, and F. Li, “Variation of the ionospheric electron density during the Bhuj seismic events,” Ann. Geophys. 22, 4123–4131 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    M. Akhoondzadeh, M. Parrot, and M.R. Saradjian, “Electron and ion density variations before strong earthquakes (M > 6.0) using DEMETER and GPS data,” Nat. Hazards Earth Syst. Sci. 10, 7–18 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    S. Sarkar, S. Choudhury, S. Sonakia, A. Vishwakarma, and A.K. Gwal, “Ionospheric anomalies associated with the Haiti earthquake of 12 January 2010 observed by DEMETER satellite,” Nat. Hazards Earth Syst. Sci. 12, 671–678 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    S.A. Pulinets and M.A. Dunajecka, “Specific variation of air temperature and relative humidity around the time of Michoacan earthquake M8.1 Sept. 19, 1985 as a possible indicator of interaction between tectonic plates,” Tectonophysics 431, 221–230 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    S.A. Pulinets, “Lithosphere-atmosphere-ionosphere coupling (LAIC) model,” in Electromagnetic Phenomena Associated with Earthquakes (Transworld Reaserch Network, 2009), pp. 235–254.Google Scholar
  28. 28.
    L.M. Fishkova, M.B. Gokhberg, and V.A. Pilipenko, “Relationship between night airglow and seismic activity,” Ann. Geophys. 3, 689–694 (1985).ADSGoogle Scholar
  29. 29.
    L.M. Fishkova, “Seismic activity effect in variations of the nighttime emission of the upper atmosphere of the Earth,” Soobshcheniia Gruzinskoi Akademii Nauk 116, 89–92 (1984).ADSGoogle Scholar
  30. 30.
    T.I. Toroshelidze and L.M. Fishkova, “Manifestation of seismic activity in nightglow variations,” Poliarnye Stiantsii: Svechenic Nochnogo Neba 33, 17–23 (1989).ADSGoogle Scholar
  31. 31.
    G.G. Didebulidze, L.M. Fishkova, A.D. Pataraya, and T.I. Toroshelidze, “Investigation of night sky airglow near the epicenter of the earthquake,” Plasma Astrophys. 8, 321–327 (1990).ADSGoogle Scholar
  32. 32.
    G.A. Nasyrov, “Correlation between night sky emission and seismic activity,” Izv. Acad. Nauk Tadzh. SSR 2, 119–122 (1978).Google Scholar
  33. 33.
    A.V. Mikhalev, M.S. Papov, and E.S. Kazimirovsky, “The manifestation of seismic activity in 557.7 nm emission variations of the Earth’s upper atmosphere,” Adv. Space Res. 27, 1105–1108 (2001).ADSCrossRefGoogle Scholar
  34. 34.
    A.V. Mikhalev, “[OI] 557.7 nm airglow during seismic events in the Baikal rift zone,” Atmos. Ocean. Opt. 30 (3), 243–247 (2017).CrossRefGoogle Scholar
  35. 35.
    M.P. Korobeinikova, R.N. Kulieva, M. Goshdzhanov, V.G. Khamidulina, and A.A. Shamov, “Variation of 557.7 nm, 630.0 nm and Na nightglow emissions during earthquake periods,” Poliarnye Stiantsii: Svechenic Nochnogo Neba 33, 24–27 (1989).ADSGoogle Scholar
  36. 36.
    D. Barbier, “The light of the night sky in summer in Taamanrasset,” Comptes Rendus Acad. Sci. 245, 1559–1561 (1957).Google Scholar
  37. 37.
    D. Barbier, “Research on the 6300 line of night airglow,” Ann. Geophys. 15, 179–217 (1959).Google Scholar
  38. 38.
    A.S. Silina, E.V. Liperovskaya, V.A. Liperovsky, and C.V. Meister, “Ionospheric phenomena before strong earthquakes,” Nat. Hazards Earth Syst. Sci. 1, 113–118 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. K. Gole
    • 1
    Email author
  • S. K. Midya
    • 1
    • 2
  • P. Panda
    • 1
  • A. Nandi
    • 1
  1. 1.Department of Atmospheric SciencesUniversity of CalcuttaKolkataIndia
  2. 2.Indian Centre of Space PhysicsChalantikaIndia

Personalised recommendations