Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 665–669 | Cite as

Study of the Possible Impact of the Calbuco Volcano Eruption on the Abnormal Destruction of Stratospheric Ozone over the Antarctic in Spring 2015

  • V. V. ZuevEmail author
  • E. S. Savelieva
  • T. V. Parezheva
Atmospheric Radiation, Optical Weather, and Climate
  • 1 Downloads

Abstract

One of the strongest stratospheric ozone depletion events over the Antarctic was observed in October–November 2015. The increase in the ozone hole was associated with the eruption of Calbuco volcano (Chile) in April 2015, with a maximum plume altitude of ~17 km. Based on the ERA-Interim reanalysis data and the NOAA HYSPLIT trajectory model we estimate the possibility of the volcanic aerosol penetrating the polar vortex. It is shown that volcanic aerosol could not contribute to the intensification of ozone depletion reactions since it was outside the stable polar vortex.

Keywords

Calbuco volcano eruption Antarctic ozone hole the southern polar vortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. W. Waugh and W. J. Randel, “Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics,” J. Atmos. Sci. 56 (11), 1594–1613 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    D. W. Waugh and L. M. Polvani, “Stratospheric polar vortices,” Stratos, Dynamics: Trans. Chem. Geophys. Monograph Ser. 190, 43–57 (2010).ADSGoogle Scholar
  3. 3.
    P. A. Newman, “Chemistry and dynamics of the Antarctic ozone hole,” Stratos. Dynamics: Trans. Chem. Geophys. Monograph Ser. 190, 157–171 (2010).ADSGoogle Scholar
  4. 4.
    S. Solomon, R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, “On the depletion of Antarctic ozone,” Nature 321, 755–758 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications (Academic Press, California, 2000).Google Scholar
  6. 6.
    G. L. Manney and R. W. Zurek, “On the motion of air through the stratospheric polar vortex,” J. Atmos. Sci. 51 (20), 2973–2994 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    A. H. Sobel, R. A. Plumb, and D. W. Waugh, “Methods of calculating transport across the polar vortex edge,” J. Atmos. Sci. 54 (18), 2241–2260 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    P. J. Young, K. H. Rosenlof, S. Solomon, S. C. Sherwood, Q. Fu, and J.-F. Lamarque, “Changes in stratospheric temperatures and their implications for changes in the Brewer-Dobson circulation (1979–2005),” J. Clim. 25, 1759–1772 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    D. J. Hofmann and S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichon,” J. Geophys. Res., D 94 (4), 5029–5041 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    M. P. McCormick, L. W. Thomason, and C. R. Trepte, “Atmospheric effects of the Mt. Pinatubo eruption,” Nature 373 (6513), 399–404 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    W. J. Randel, F. Wu, J. M. Russell, J. W. Waters, and L. Froidevaux, “Ozone and temperature changes in the stratosphere following the eruption of Pinatubo,” J. Geophys. Res., D 100 (8), 16753–16764 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    S. Solomon, R. W. Portmann, R. R. Garcia, W. J. Randel, F. Wu, R. M. Nagatani, J. Gleason, L. Thomason, L. R. Poole, and M. P. McCormick, “Ozone depletion at midlatitudes: Coupling of volcanic aerosols and temperature variability to anthropogenic chlorine,” Geophys. Res. Lett. 25 (11), 1871–1874 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    A. Robock, “Volcanic eruptions and climate,” Rev. Geophys. 38 (2), 191–219 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    S. Solomon, D. J. Ivy, D. Kinnison, M. J. Mills, R. R. Neely, and A. Schmidt, “Emergence of healing in the Antarctic ozone layer,” Science 353, 269–274 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    D. J. Ivy, S. Solomon, D. Kinnison, M. J. Mills, A. Schmidt, and R. R. Neely, “III, The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model,” Geophys. Res. Lett. 44 (5), 2556–2561 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    P. A. Newman, S. R. Kawa, and E. R. Nash, “On the size of the Antarctic ozone hole,” Geophys. Res. Lett. 31 (21), L21104 (2004).Google Scholar
  17. 17.
    Goddard Space Flight Center (GSFC). NASA’s Ozone Hole Watch Web Site (online database). http://ozonewatch. gsfc.nasa.gov/meteorology/SH.html (Cited March 25, 2018).Google Scholar
  18. 18.
    The European Centre for Medium-Range Weather Forecasts (ECMWF). ERA Interim reanalysis (online database). http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/(Cited March 25, 2018).Google Scholar
  19. 19.
    Global Volcanism Program (GVP). Smithsonian National Museum of Natural History. https://volcano. si.edu (Cited March 25, 2018).Google Scholar
  20. 20.
    V. I. Gryazin and S. A. Beresnev, “Influence of vertical wind on stratospheric aerosol transport,” Meteorol. Atmos. Phys. 110 (3-4), 151–162 (2011).Google Scholar
  21. 21.
    K. M. Malina, Handbok on Work with Sulphuric Acid (Khimiya, Moscow, 1971) [in Russian].Google Scholar
  22. 22.
    N. Bègue, D. Vignelles, G. Berthet, T. Portafaix, G. Payen, F. Jégou, H. Benchérif, J. Jumelet, J.-P. Vernier, T. Lurton, J.-B. Renard, L. Clarisse, V. Duverger, F. Posny, J.-M. Metzger, and S. Godin-Beekmann, “Long-range isentropic transport of stratospheric aerosols over Southern Hemisphere following the Calbuco eruption in April 2015,” Atmos. Chem. Phys. 17 (24), 15019–15036 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition,” Aust. Meteorol. Mag. 47, 295–308 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Zuev
    • 1
    • 2
    Email author
  • E. S. Savelieva
    • 1
  • T. V. Parezheva
    • 1
  1. 1.Institute of Monitoring of Climatic and Ecological Systems, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations