Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 690–697 | Cite as

A Multi-Aperture Transceiver System of a Lidar with Narrow Field of View and Minimal Dead Zone

  • S. M. BobrovnikovEmail author
  • E. V. Gorlov
  • V. I. Zharkov
Optical Instrumentation


Requirements are determined for the spontaneous Raman lidar transceiver system, designed for solving problems dealing with studying the atmospheric boundary layer and predicting dangerous smog situations. The optical scheme of a lidar transceiver system with a narrow field of view and minimal dead zone is synthesized. The results of computer simulation of the lidar overlap functions obtained by the ray tracing method for few optical schemes of the receiving optical system are presented. It is shown that when a multielement transceiver based on a combination of four receiving apertures of different diameters is used, a lidar sensing range can be from 5 to 3000 m for the dynamic range of the lidar response of no more than 10.


lidar transceiver system temperature atmosphere optical fiber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. R. Agishev and C. Adolfo, “Spatial filtering efficiency of monostatic biaxial lidar: Analysis and applications,” Appl. Opt. 41, 7516–7521 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    K. Stelmaszczyk, M. Dell’Aglio, S. Chudzynski, T. Stacewicz, and L. Woste, “Analytical function for lidar geometrical compression form-factor calculations,” J. Appl. Opt. 44 (7), 1323–1331 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41 (3), 511–514 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    S. Hu, X. Wang, Y. Wu, C. Li, and H. Hu, “Geometrical form factor determination with Raman backscattering signals,” Opt. Lett. 30 (14), 1879–1881 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    V. A. Banakh, I. A. Razenkov, and I. N. Smalikho, “Aerosol lidar for study of the backscatter amplification in the atmosphere. Part I. Computer simulation,” Opt. Atmos. Okeana. 28 (1), 5–11 (2015).Google Scholar
  6. 6.
    B. V. Kaul, “Antenna complex for laser sensing of the upper atmospheric layers,” Atmos. Ocean. Opt. 5 (4), 277–281 (1992)MathSciNetGoogle Scholar
  7. 7.
    A. I. Abramochkin and A. A. Tikhomirov, “Optimization of a lidar receiving system. 2. Spatial filters,” Atmos. Ocean. Opt. 12 (4), 331–342 (1999).Google Scholar
  8. 8.
    Yu. S. Balin and I. V. Samokhvalov, Certain Approaches to arrowing the Dynamic Range of Lidar Signals. Instruments and Techniques for Remote Sounding of Atmospheric Parameters (Nauka, Novosibirsk, 1979), p. 43–47 [in Russian].Google Scholar
  9. 9.
    Yu. S. Balin, I. V. Samokhvalov, and V. S. Shamanaev, USSR Inventor’s Certificate No. 496524, Byull. Izobret., No. 47 (1975).Google Scholar
  10. 10.
    A. A. Tikhomirov, “Analysis of methods and devices to compress the dynamic range of lidar returns,” Atmos. Ocean. Opt. 13 (2), 190–201 (2000).Google Scholar
  11. 11.
    Yu. S. Balin, G. P. Kokhanenko, M. G. Klemasheva, I. E. Penner, and S. V. Samoilova, RF Patent No. 116652, Byull. Izobret. 27.05.2012.Google Scholar
  12. 12.
    Yu. S. Balin, G. S. Bairashin, G. P. Kokhanenko, M. G. Klemasheva, I. E. Penner, and S. V. Samoilova, “LOSA-M2 aerosol Raman lidar,” Quantum Electron. 41 (10), 945–949 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Yu. Arshinov, and H. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. 2004 (79), 775–782.Google Scholar
  14. 14.
    M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    Yu. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Muller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer,” Appl. Opt. 44 (17), 3593–3603 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    G. P. Kokhanenko, Yu. S. Balin, M. G. Klemasheva, I. E. Penner, S. V. Samoilova, S. A. Terpugova, V. A. Banakh, I. N. Smalikho, A. V. Falits, T. M. Rasskazchikova, P. N. Antokhin, M. Yu. Arshinov, B.D. Belan, and S. B. Belan, “Structure of aerosol fields of the atmospheric boundary layer according to aerosol and Doppler lidar data during passage of atmospheric fronts,” Atmos. Ocean. Opt. 30 (1), 18–32 (2017).CrossRefGoogle Scholar
  17. 17.
    E. L. McGrath-Spangler and A. Molod, “Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions,” Atmos. Chem. Phys. 14, 6717–6727 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    E. L. McGrath-Spangler and A. S. Denning, “Global seasonal variations of midday planetary boundary layer depth from CALIPSO space-borne LIDAR,” J. Geophys. Res.: Atmos 118, 1226–1233 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    D. J. Seidel, C. O. Ao, and K. Li, “Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis,” J. Geophys. Res. 115 (D16), D16113 (2010).Google Scholar
  20. 20.
    J. Cooney and M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    R. Gill, K. Geller, J. Farina, and J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    G. G. Matvienko, Yu. S. Balin, S. M. Bobrovnikov, O. A. Romanovskii, G. P. Kokhanenko, S. V. Samoilova, I. E. Penner, E. V. Gorlov, V. I. Zharkov, S. A. Sadovnikov, O. V. Kharchenko, S. V. Yakovlev, O. E. Bazhenov, V. D. Burlakov, S. I. Dolgii, A. P. Makeev, A. A. Nevzorov, and A. V. Nevzorov, “Siberian Lidar Station: Instrument and results,” Proc. SPIE 10035, CID: 1003 59, [10035–227] (2016). doi 10.1117/12.2254787Google Scholar
  23. 23.
    J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11 (1), 108–112 (1972).ADSCrossRefGoogle Scholar
  24. 24.
    R. J. Butcher, D. V. Willetts, and W. J. Jones, “On the use of Fabry-Perot etalon for the determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. Roy. Soc. Lon., A 324, 231–245 (1971).ADSCrossRefGoogle Scholar
  25. 25.
    J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51, 8111–8131 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    J. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    V. Sherlock, A. Hauchecorne, and J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earths atmosphere,” Appl. Opt. 31, 3068–3082 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    Laser Monitoring of the Atmosphere, Ed. by E.D. Hinkley (Springer, Berlin, Heidelberg, 1976).Google Scholar
  30. 30.
    T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Bergh, “Raman Lidar for Meteorological Observations, RALMO—Part 1: Instrument description,” Atmos. Meas. Tech. 6, 1329–1346 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. M. Bobrovnikov
    • 1
    • 2
    Email author
  • E. V. Gorlov
    • 1
    • 2
  • V. I. Zharkov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations