Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 698–701 | Cite as

Optoelectronic UV Communication on Scattered Laser Radiation

  • V. V. BelovEmail author
  • Yu. V. Gridnev
  • A. N. Kudryavtsev
  • M. V. Tarasenkov
  • A. V. Fedosov
Optical Instrumentation

Abstract

Previous and new results on the problems of optical communication in scattered laser radiation in the UV wavelength range, obtained at the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, are discussed. Field experiments on optoelectronic communication in night- and daytime conditions in 2017 and 2018 are presented.

Keywords

laser radiation scattering field experiments optical communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Yin, S. Chang, H. Jia, Ji. Yang, and Ju. Yang, “Nonlineof-sight multiscatter propagation model,” J. Opt. Soc. Am., A 26 (11), 2466–2469 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27 (9), 1535–1544 (2009).CrossRefGoogle Scholar
  3. 3.
    H. Yin, H. Jia, H. Zhang, X. Wang, S. Chang, and J. Yang, “Vectorized polarization-sensitive model of non-line-of-sight multiple-scatter propagation,” J. Opt. Soc. Am., A 28 (10), 2082–2085 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    D. Han, X. Fan, K. Zhang, and R. Zhu, “Research on multiple-scattering channel with Monte Carlo model in UV atmosphere communication,” Appl. Opt. 52 (22), 5516–5522 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    H. Xiao, Y. Zuo, J. Wu, Y. Li, and J. Lin, “Non-lineof-sight ultraviolet single-scatter propagation model in random turbulent medium,” Opt. Lett. 38 (17), 3366–3369 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, V. O. Troitskii, and D. V. Shiyanov, “Atmospheric bistatic communication channels with scattering. Part 1. Methods of study,” Atmos. Ocean. Opt. 26 (5), 364–370 (2013).CrossRefGoogle Scholar
  7. 7.
    V. K. Jagadeesh, Arpita. Choudhary, Fr. M. Bui, and P. Muthuchidambaranathan, “Characterization of channel impulse responses for NLOS Underwater wireless optical communications,” in Conf. Advances in Computing and Communications (ICACC), August 27–29, 2014, Cochin (IEEE, 2014), p. 77–79.Google Scholar
  8. 8.
    Arpita Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of NLOS underwater wireless optical communication channel,” in Int. Conf. “Electronics and Communication Systems (ICECS)”, February 13–14, 2014, Coimbatore (IEEE, 2014), p. 1–4.Google Scholar
  9. 9.
    C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5 (1), 1–12 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am., A 26 (3), 530–539 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    H. Yin, S. Chang, X. Wang, Ji. Yang, Ju. Yang, and J. Tan, “Analytical model of non-line-of-sight singlescatter propagation,” J. Opt. Soc. Am., A 27 (7), 1505–1509 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Elshimy and S. Hranilovic, “Non-line-of-sight single-scatter propagation model for noncoplanar geometries,” J. Opt. Soc. Am., A 28 (3), 420–428 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    V.N. Pozhidaev, “Implementability of UV communication lines based on the effects of molecular and aerosol scattering in the atmosphere,” Radiotekh. Elektron. 22 (10), 2190–2192 (1977).ADSGoogle Scholar
  14. 14.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and V. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].Google Scholar
  15. 15.
    E. G. Kablukova and B. A. Kargin, “Effective discreteatikhastic modifications of local Monte Carlo estimates for priblems of laser sounding of scattering media,” Vychisl. Tekhnol. 17 (3), 70–82 (2012).Google Scholar
  16. 16.
    G. Z. Lotova, “Modification of the double local estimate of the Monte Carlo Method in radiation transfer theory,” Russ. J. Num. Analysis Math. Modeling 26 (5), 491–500 (2011).MathSciNetzbMATHGoogle Scholar
  17. 17.
    G. A. Mikhailov and G. Z. Lotova, “Numerical-statistical estimate of the particle flux with a finite dispersion,” Dokl. Akad. Nauk 447 (1), 18–21 (2012).Google Scholar
  18. 18.
    V. V. Belov and M. V. Tarasenkov, “Three algorithms of statistical modeling of optical communication on scattered and bistatic sensing,” Atmos. Ocean. Opt. 29 (6), 533–540 (2016).CrossRefGoogle Scholar
  19. 19.
    V. V. Belov and M. V. Tarasenkov, “Algorithms of statistical modeling of optical communication of pulse bistatic connumication channels,” in Proc. of Int. Conf. “Urgent Problems of Computational and Applied Mathemetic-2015,” Devoted to the 90th Anniversary of G.I. Marchuk, Institute of Computational Mathematics and Mathmatical Geophysicas SB RAS, October 19–23 2015 (Abvei, Novosibirsk, 2015), p. 95–101 [in Russian].Google Scholar
  20. 20.
    V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, Yu. V. Gridnev, V. O. Troitskii, and V. A. Dimaki, “Atmospheric bistatic communication channels with scattering. Part 2. Field experiments in 2013,” Atmos. Oceanic Opt. 28 (3), 202–208 (2015).CrossRefGoogle Scholar
  21. 21.
    V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, and V. O. Troitskii, “Over-the-horizon optoelectronic communication systems,” Russ. Phys. J. 57 (7), 202–208 (2014).CrossRefGoogle Scholar
  22. 22.
    V. V. Belov, M. V. Tarasenkov, and V. N. Abramochkin, “Bistatic atmospheric optoelectronic communication systems (field experiments),” Tech. Phys. Lett. 40 (10), 871–874 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    V. V. Belov, “Optical communication on scattered laser radiation,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, CID: 10466 0H, [10466-24] (2017).Google Scholar
  24. 24.
    V. V. Belov, V. N. Abramochkin, Yu. V. Gridnev, A. N. Kudryavtsev, S. P. Kulaev, M. V. Tarasenkov, V. O. Troitskii, and A. V. Fedosov, “Bistatic optoelectronic communication systems: Field experiments in artificial and natural water reservoirs,” Atmos. Oceanic Opt. 30 (4), 366–371 (2017).CrossRefGoogle Scholar
  25. 25.
    V. N. Abramochkin, V. V. Belov, Yu. V. Gridnev, A. N. Kudryavtsev, M. V. Tarasenkov, and A. V. Fedosov, “Optoelectronic communication in the atmosphere using diffuse laser radiation: Experiments in the field,” Light Eng. 25 (4), 41–49 (2017).Google Scholar
  26. 26.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, E. V. Pokrovskii, G. N. Tolmachev, and A. V. Fofonov, “Sites for monitoring of greenhouse gases and gases oxidizing the atmosphere,” Atmos. Ocean. Opt. 20 (1). 45–53 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Belov
    • 1
    Email author
  • Yu. V. Gridnev
    • 1
  • A. N. Kudryavtsev
    • 1
  • M. V. Tarasenkov
    • 1
  • A. V. Fedosov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations