Atmospheric and Oceanic Optics

, Volume 31, Issue 5, pp 507–518 | Cite as

Results of the Study of Aerosol Characteristics in the Atmosphere of the Kara and Barents Seas in Summer and Autumn 2016

  • S. A. TerpugovaEmail author
  • P. N. Zenkova
  • D. M. Kabanov
  • V. V. Pol’kin
  • L. P. Golobokova
  • M. V. Panchenko
  • S. M. Sakerin
  • A. P. Lisitzin
  • V. P. Shevchenko
  • N. V. Politova
  • V. S. Kozlov
  • T. V. Khodzher
  • V. P. Shmargunov
  • D. G. Chernov
Optical Models and Databases


Measurement results of a complex of aerosol microphysical, chemical, and optical parameters in two cruises of the Akademik Mstislav Keldysh research vessel in 2016 are analyzed. The work was carried out in the Kara Sea from July 10 till August 20 and in the Barents Sea from August 25 till October 10. The mean values of the following aerosol characteristics are given: AOD of the atmosphere, fine and coarse components of AOD, number concentration of particles in the near-water air layer, mass concentrations of the absorbing matter (soot), water-soluble ions (Na+, Mg2+, Cl, K+, Ca2+, \(\rm{NH}_4^+, \rm{NO}_3^-, \rm{SO}_4^{2-}\)), and gaseous admixtures (SO2, HCl, HNO3, and NH3). The characteristic particle size distribution functions are presented for different regions of the Kara and Barents Seas. It is shown that the levels of both aerosol turbidity of the atmospheric column (AOD) and the aerosol and soot concentrations in the near-water air layer were close to the long-term mean values in Arctic latitudes. The atmospheric turbidity during the period of measurements was noticeably affected by emissions of continental forest fire smokes. The contribution of smoke aerosol to, e.g., the mean shipborne-measured AOD at λ = 0.5 μm is about 44%.


RV Akademik Mstislav Keldysh marine atmosphere aerosol microphysical characteristics chemical composition aerosol optical depth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ya. Kondrat’ev, Aerosol as a climate-forming component of the atmosphere. 2. Direct and indirect impact on climate, Atmos. Ocean. Opt. 15 (4), 267–284 (2002).Google Scholar
  2. 2.
    L. S. Ivlev, “Aerosol forcing in climate processes,” Opt. Atmos. Okeana 24 (5), 392–410 (2011).Google Scholar
  3. 3.
    K. Ya. Kondrat’ev, “Aerosol radiative forcing,” Atmos. Ocean. Opt. 16 (1), 1–12. 2003Google Scholar
  4. 4.
    K. Ya. Kondrat’ev, “Aerosol and climate studies: Current state and prospects. 3. Aerosol radiative forcing,” Atmos. Ocean. Opt. 19 (7), 505–513 (2006).Google Scholar
  5. 5.
    C. Zhao and T. J. Garrett, “Effects of Arctic haze on surface cloud radiative forcing,” Geophys. Res. Lett. 42 (2015).Google Scholar
  6. 6.
    A. A. Vinogradova and V. A. Egorov, “About possibilities of far-range atmospheric transport of pollutants in the Russian Arctic,” Izv. Akad. Nauk. Fiz. Atmos. Okeana 32 (6), 796–802 (1996).Google Scholar
  7. 7.
    A. A. Vinogradova, “Atmospheric transport of passive admixtures in different parts of the Russian Arctic in spring,” Dokl. Akad. Nauk 355 (5), 677–679 (1997).Google Scholar
  8. 8.
    A. A. Vinogradova and T. Ya. Ponomareva, “Atmospheric transport of anthropogenic impurities to the Russian arctic (1986–2010),” Atmos. Ocean. Opt. 25 (6), 414–422 (2012).CrossRefGoogle Scholar
  9. 9.
    Arctic Climate Impact Assessment, Impacts of a Warming Arctic: Arctic Climate Impact Assessment (ACIA) Tech. Rep. (Cambridge Univ. Press, Cambridge, 2005).Google Scholar
  10. 10. syr.pdf (Cited May 20, 2012).Google Scholar
  11. 11. WG1AR5_ALL_FINAL.pdf (Cited August 20, 2014).Google Scholar
  12. 12.
    P. Glantz, A. Bourassa, A. Herber, T. Iversen, J. Karlsson, A. Kirkevåg, M. Maturilli, Ø. Seland, K. Stebel, H. Struthers, M. Tesche, and L. Thomason, “Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations,” J. Geophys. Res. 119 (13), 8169–8188 (2014). doi 10.1002/2013JD021279Google Scholar
  13. 13.
    V. V. Smirnov and V. P. Shevchenko, “Hazes and fogs over polar seas,” Rus. Meteorol. Hydrol., No. 1, 49–57 (2003).Google Scholar
  14. 14.
    A. A. Vinogradova, “Microelements in the Arctic aerosol (review),” Izv. Akad. Nauk. Fiz. Atmos. Okeana 29 (4), 437–456 (1993).ADSGoogle Scholar
  15. 15.
    V. V. Smirnov, V. F. Radionov, A. V. Savchenko, A. A. Pronin, and V. V. Kuusk, “Variability in aerosol and air ion composition in the Arctic spring atmosphere,” Atmos. Res. 49, 163–176 (1998).CrossRefGoogle Scholar
  16. 16.
    A. A. Vinogradova and V. P. Shevchenko, “The role of atmospheric aerosols in the pollution of the Arctic Ocean and its seas,” Atmos. Ocean. Opt. 18 (5–6), 344–349 (2005).Google Scholar
  17. 17.
    A. A. Vinogradova, “Seasonal and long-term variations in atmospheric circulation indices and air mass transport to the Russian Arctic,” Opt. Atmos. Okeana 27 (6), 463–472 (2014).CrossRefGoogle Scholar
  18. 18.
    G. Ancellet, J. Pelon, Y. Blanchard, B. Quennehen, A. Bazureau, K. S. Law, and A. Schwarzenboeck, “Transport of aerosol to the Arctic: Analysis of CALIOP and French aircraft data during the spring 2008 POLARCAT campaign,” Atmos. Chem. Phys. 14, 8235–8254 (2014). doi 10.5194/acp-14-8235-2014ADSCrossRefGoogle Scholar
  19. 19.
    N. Z. Heidam, “The components of the Arctic aerosol,” Atmos. Environ. 18 (2), 329–343 (1984).ADSCrossRefGoogle Scholar
  20. 20.
    M. Stock, C. Ritter, A. Herber, W. von Hoyningen-Huene, K. Baibakov, J. Graser, T. Orgis, R. Treffeisen, N. Zinoviev, A. Makshtas, and K. Dethloff, “Springtime arctic aerosol: Smoke versus haze, a case study for March 2008,” Atmos. Environ. 52, 48–55 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    C. Deser, R. Tomas, M. Alexander, and D. Lawrence, “The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century,” J. Clim. 23, 333–351 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    M.-E. Gagne, N. P. Gillett, and J. C. Fyfe, “Impact of aerosol emission controls on future Arctic sea ice cover,” Geophys. Res. Lett. 42, 8481–8488 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    J. Stroeve, M. M. Holland, W. Meier, T. Scambos, and M. Serreze, “Arctic sea ice decline: Faster than forecast,” Geophys. Res. Let. 34, L09501 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    K. Eleftheriadis, S. Vratolis, and S. Nyeki, “Aerosol black carbon in the European Arctic: Measurements at Zeppelin Station, NyAlesund, Svalbard from 1998–2007,” Geophys. Res. Lett. 36, L02809 (2009). doi: 10.1029/2008GL035741ADSCrossRefGoogle Scholar
  25. 25.
    M. Di Pierro, L. Jaeglel, E. W. Eloranta, and S. Sharma, “Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006–2012),” Atmos. Chem. Phys. 13, 7075–7095 (2013). doi 10.5194/acp-13-7075-2013ADSCrossRefGoogle Scholar
  26. 26.
    N. C. Shantz, I. Gultepe, E. Andrews, A. Zelenyuk, M. E. Earle, A. M. Macdonald, P. S. K. Liua, and W. R. Leaitch, “Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008,” Int. J. Climatol. 34, 3125–3138 (2014), doi 10.1002/joc.3898CrossRefGoogle Scholar
  27. 27.
    J. Zhan, Y. Gao, W. Li, L. Chen, H. Lin, and Q. Lin, “Effects of ship emissions on summertime aerosols at Ny-Alesund in the Arctic,” Atmos. Pollut. Res. 5, 500–510 (2014).CrossRefGoogle Scholar
  28. 28.
    A. Bazzano, F. Ardini, M. Grotti, M. Malandrino, A. Giacomino, O. Abollino, D. Cappelletti, S. Becagli, R. Traversi, and R. Udisti, “Elemental and lead isotopic composition of atmospheric particulate measured in the Arctic region (Ny-Ålesund, Svalbard Islands),” Rend. Fis. Acc. Lincei. 27 (Suppl. 1), S73–S84 (2016).CrossRefGoogle Scholar
  29. 29.
    P. R. Sinha, Y. Kondo, M. Koike, J. A. Ogren, A. Jefferson, T. E. Barrett, R. J. Sheesley, S. Ohata, N. Moteki, H. Coe, D. Liu, M. Irwin, P. Tunved, P. K. Quinn, and Y. Zhao, “Evaluation of ground-based black carbon measurements by filter-based photometers at two Arctic sites,” J. Geophys. Res. Atmos. 122, 3544–3572 (2017). doi 10.1002/2016JD025843ADSCrossRefGoogle Scholar
  30. 30.
    C. G. Deshpande and A. K. Kamra, “Physical properties of the arctic summer aerosol particles in relation to sources at Ny-Alesund, Svalbard,” J. Earth Syst. Sci. 123 (1), 201–212 (2014). doi 10.1007/s12040-013-0373-0ADSCrossRefGoogle Scholar
  31. 31.
    V. F. Radionov and M. S. Marshunova, “Long-term variations in the turbidity of the Arctic atmosphere in Russia,” Atmos. Ocean. 30 (4), 531–549 (1992). doi 10.1080/07055900.1992.9649454CrossRefGoogle Scholar
  32. 32.
    V. F. Radionov, M. S. Marshunova, E. N. Rusina, K. E. Lubo-Lesnichenko, and Yu. E. Pimanova, “Aerosol turbidity of the atmosphere in polar regions,” Izv. Akad. Nauk. Fiz. Atmos. Okeana, No. 6, 797–801 (1994).Google Scholar
  33. 33.
    C. Tomasi, V. Vitale, A. Lupi, C. Di Carmine, M. Campanelli, A. Herber, R. Treffeisen, R. S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen- Huene, K. Stebel, G. H. Hansen, C. L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Strom, C. Toledano, V. E. Cachorro, P. Ortiz, A. M. De Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zielinski, T. Petelski, and T. Yamanouchi, “Aerosols in polar regions: A historical overview based on optical depth and in situ observations,” J. Geophys. Res. 112, D16205 (2007). doi 10.1029/2007JD008432ADSCrossRefGoogle Scholar
  34. 34.
    C. Toledano, V. E. Cachorro, M. Gausa, K. Stebel, V. Aaltonen, A. Berjon, J. P. Ortiz de Galisteo, A. M. De Frutos, Y. Bennouna, S. Blindheim, C. L. Myhre, G. Zibordi, C. Wehrli, S. Kratzer, B. Hakansson, T. Carlund, G. De Leeuw, A. Herber, and B. Torres, “Overview of sun photometer measure ments of aerosol properties in Scandinavia and Svalbard,” Atmos. Environ. 52, 18–28 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    S. M. Sakerin, D. G. Chernov, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, V. V. Pol’kin, and V. F. Radionov, “Preliminary results of the study of aerosol characteristics of the atmosphere near Barentsburg (Spitsbergen),” Problemy Arktiki Antarktiki 91 (1), 20–31 (2012).Google Scholar
  36. 36.
    S. M. Sakerin, S. Yu. Andreev, D. M. Kabanov, S. V. Nikolashkin, A. N. Prakhov, V. F. Radionov, Yu. S. Turchinovich, D. G. Chernov, B. N. Holben, A. Smirnov, and M. G. Sorokin, “On results of studies of atmospheric aerosol optical depth in Arctic regions,” Atmos. Ocean. Opt. 27 (6), 517–528 (2014).CrossRefGoogle Scholar
  37. 37.
    D. G. Chernov, V. S. Kozlov, M. V. Panchenko, Yu. Turchinovich, V. F. Radionov, A. V. Gubin, and A. N. Prakhov, “Features of the Variability of aerosol and soot concentrations in the surface air layer in Barentsburg (Spitsbergen) in 2011–2013,” Problemy Arktiki Antarktiki 102 (12), 34–44 (2014).Google Scholar
  38. 38.
    D. G. Chernov, V. S. Kozlov, M. V. Panchenko, Yu. S. Turchinovich, V. F. Radionov, A. V. Gubin, A. N. Prakhov, K. E. Lubo-Lesnichenko, O. R. Sidorova, L. P. Golobokova, T. V. Khodzher, O. I. Huriganova, and N. A. Onishchuk, “Investigation of microphysical characteristics and chemical composition of near-ground aerosol in Barentsburg (Spitsbergen) in the spring and summer seasons of 2011–2015,” Proc. SPIE 10035, 100334 (2016).Google Scholar
  39. 39.
    V. P. Shevchenko, Impact of Aerosols on the Environment and Marine Precipitation Accumulation in the Arctic (Nauka, Moscow, 2006) [in Russian].Google Scholar
  40. 40.
    V. P. Shevchenko, A. P. Lisitzin, A. A. Vinogradova, V. V. Smirnov, V. V. Serova, and R. Shtain, “Arctic aerosols. Results of ten-year investigations,” Atmos. Ocean. Opt. 13 (6–7), 510–533 (2000).Google Scholar
  41. 41.
    R. Döscher, T. Vihma, and E. Maksimovich, “Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: A review,” Atmos. Chem. Phys. 14, 13571–13600 (2014).ADSCrossRefGoogle Scholar
  42. 42.
    K. M. Markowicz, P. Pakszys, Ch. Ritter, T. Zielinski, R. Udisti, D. Cappelletti, M. Mazzola, M. Shiobara, O. Zawadzka, J. Lisok, T. Petelski, P. Makuch, and G. Karasinski, “Impact of North American intense fires on aerosol optical properties measured over the European Arctic in July 2015,” J. Geophys. Res. 121, 14487–14512 (2016).Google Scholar
  43. 43.
    A. A. Vinogradova, N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Forest fires in Siberia and Far East: Emissions and atmospheric transport of black carbon to the Arctic,” Atmos. Ocean. Opt. 28 (6), 566–574 (2015).CrossRefGoogle Scholar
  44. 44.
    A. A. Vinogradova, N. S. Smirnov, and V. N. Korotkov, “Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic,” Atmos. Ocean. Opt. 29 (6), 545–550 (2016).CrossRefGoogle Scholar
  45. 45.
    J.-C. Raut, L. Marelle, J. D. Fast, J. L. Thomas, B. Weinzierl, K. S. Law, L. K. Berg, A. Roiger, R. C. Easter, K. Heimerl, T. Onishil, J. Delanoe, and H. Schlager, “Cross-polar transport and scavenging of Siberian aerosols containing black carbon during the 2012 ACCESS summer campaign,” Atmos. Chem. Phys. Discuss. 17 (18), 10969–10995 (2017). doi 10.5194/acp-2016-1023ADSCrossRefGoogle Scholar
  46. 46.
    V. V. Pol’kin, L. P. Golobokova, V. S. Kozlov, V. B. Korobov, A. P. Lisitsyn, M. V. Panchenko, M. A. Peskova, T. V. Khodzher, and V. P. Shevchenko, “Estimation of correlation between microphysical properties and chemical composition of aerosol over the White Sea,” Atmos. Ocean. Opt. 17 (5–6), 330–338 (2004).Google Scholar
  47. 47.
    V. V. Pol’kin, M. V. Panchenko, and L. P. Golobokova, “Ion composition of near-water aerosol over White Sea in Augusts of 2003–2006,” Atmos. Ocean. Opt. 20 (11), 911–916 (2007).Google Scholar
  48. 48.
    V. V. Pol’kin, M. V. Panchenko, I. V. Grishchenko, V. B. Korobov, A. P. Lisitsyn, and V. P. Shevchenko, “Study of the disperse composition of the near-water aerosol over the White Sea in the end of summer, 2007,” Atmos. Ocean. Opt. 21 (10), 725–729 (2008).Google Scholar
  49. 49.
    V. V. Pol’kin, M. V. Panchenko, L. P. Golobokova, U. G. Filippova, T. V. Khodzher, A. P. Lisitsyn, and V. P. Shevchenko, “Near-water aerosol of the White and Kara Seas in August-September 2007,” in Meteorological and geophysical Research (Paulsen, Moscow, 2011), p. 199–214 [in Russian].Google Scholar
  50. 50.
    V. V. Pol’kin, L. P. Golobokova, T. V. Pogodaeva, V. S. Kozlov, V. B. Korobov, A. P. Lisitsyn, M. V. Panchenko, M. A. Peskova, T. V. Khodzher, and V. P. Shevchenko, “Aerosol composition of the nearwater air layer over the White Sea in the second half of August 2003 and 2004,” in Fundamental Research of Oceans and Seas, Ed. by N. P. Laverov (Nauka, Moscow, 2006), p. 413–439 [in Russian].Google Scholar
  51. 51.
    S. M. Sakerin, A. A. Bobrikov, O. A. Bukin, L. P. Golobokova, Vas. V. Pol’kin, Vik. V. Pol’kin, K. A. Shmirko, D. M. Kabanov, T. V. Khodzher, N. A. Onischuk, A. N. Pavlov, V. L. Potemkin, and V. F. Radionov, “On measurements of aerosol-gas composition of the atmosphere during two expeditions in 2013 along the Northern Sea Route,” Atmos. Chem. Phys. 15, 12413–12443 (2015). doi 10.5194/acp-15-12413-2015ADSCrossRefGoogle Scholar
  52. 52.
    O. B. Popovicheva, N. Evangeliou, K. Eleftheriadis, A. C. Kalogridis, N. Sitnikov, S. Eckhardt, and A. Stohl, “Black carbon sources constrained by observations in the Russian High Arctic,” Environ. Sci. Technol. 51 (7), 3871–3879 (2017).ADSCrossRefGoogle Scholar
  53. 53.
    N. I. Golubeva, L. V. Burtseva, G. G. Matishov, and G. V. Il’in, “The results of measurements of heavy metals in atmospheric aerosols in the open areas of the Arctic Seas in 2009–2010,” Dokl. Earth Sci. 453 (1), 1090–1093 (2013).ADSCrossRefGoogle Scholar
  54. 54.
    S. M. Sakerin and D. M. Kabanov, “Fine and coarse components of atmospheric aerosol optical depth in maritime and polar regions,” Atmos. Ocean. Opt. 28 (6), 510–517 (2015).CrossRefGoogle Scholar
  55. 55.
    R. S. Stone, S. Sharma, A. Herber, K. Eleftheriadis, and D. W. Nelson, “A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements,” Elementa 2, 27 (2014). doi Scholar
  56. 56.
    A. A. Vinogradova and A. V. Polissar, “Elementary composition of aerosol in the atmosphere of the central part of the Russian Arctic,” Izv. Akad. Nauk. Fiz. Atmos. Okeana 31 (2), 164–172 (1995).Google Scholar
  57. 57.
    V. P. Shevchenko, A. P. Lisitsyn, V. M. Kuptsov, G. Van-Malderen, Zh.-M. Marten, R. Van-Griken, and V. V. Khuan, “Composition of aerosols in the surface boundary layer of the atmosphere over the seas of the Western Russian Arctic,” Oceanology 39 (1), 128–136 (1999).Google Scholar
  58. 58.
    K. Huang, J. S. Fu, V. Y. Prikhodko, J. M. Storey, A. Romanov, E. L. Hodson, J. Cresko, I. Morozova, Y. Ignatieva, and J. Cabaniss, “Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation,” J. Geophys. Res.: Atmos. 120 (2015).Google Scholar
  59. 59.
    L. Qi, Q. Li, Y. Li, and C. He, “Factors controlling black carbon distribution in the Arctic,” Atmos. Chem. Phys. 17, 1037–1059 (2017).ADSCrossRefGoogle Scholar
  60. 60.
    V. S. Kozlov, M. V. Panchenko, V. P. Shmargunov, D. G. Chernov, E. P. Yausheva, V. V. Pol’kin, and S. A. Terpugova, “Long-term investigations of the spatiotemporal variability of black carbon and aerosol concentrations in the troposphere of West Siberia and Russian Subarctic,” Khimiya Interesakh Ustoichivogo Razvitiya 24 (4), 423–440 (2016).Google Scholar
  61. 61.
    V. P. Shevchenko, V. M. Kopeikin, N. Evangeliou, A. P. Lisitzin, A. N. Novigatsky, N. V. Pankratova, D. P. Starodymova, A. Stohl, and R. Tompson, “Atmospheric black carbon over the North Atlantic and the Russian Arctic seas in summer-autumn time,” Khimiya Interesakh Ustoichivogo Razvitiya 24 (4), 441–446 (2016).Google Scholar
  62. 62.
    A. A. Vinogradova and A. O. Veremeichik, “Model estimates of anthropogenic black carbon concentration in the Russian Arctic atmosphere,” Opt. Atmos. Okeana, 2013, T. 26 (6), 443–451.Google Scholar
  63. 63.
    V. M. Kopeikin, I. A. Repina, E. I. Grechko, and B. I. Ogorodnikov, “Measurements of soot aerosol content in the near-water layer in Southern and Northern hemispheres,” Atmos. Ocean. Opt. 23 (6), 500–507 (2010).CrossRefGoogle Scholar
  64. 64.
    V. S. Kozlov, V. P. Shmargunov, and V. V. Pol’kin, “Spectrophotometers of the study of characteristics of light absorption by aerosol particles,” Pribory Tekhn. Eksperim., No. 5, 1–3 (2008).Google Scholar
  65. 65.
    S. M. Sakerin, D. M. Kabanov, A. P. Rostov, S. A. Turchinov, and V. V. Knyazev, “Sun photometers for measuring spectral air transparency in stationary and mobile conditions,” Atmos. Ocean. Opt. 26 (4), 352–356 (2013).CrossRefGoogle Scholar
  66. 66.
    Study of Radiative Parameters of Aerosol in the Russian Asia, Ed. by S. M. Sakerin (Publishing House of AIO SB RAS, Tomsk, 2012) [in Russian].Google Scholar
  67. 67.
    D. M. Kabanov and S. M. Sakerin, “Some problems in determining optical thickness of the atmosphere due to extinction by aerosol in the near IR,” Atmos. Ocean. Opt. 10 (8), 540–545 (1997).Google Scholar
  68. 68.
    D. M. Kabanov, V. V. Veretennikov, Yu. V. Voronina, S. M. Sakerin, and Yu. S. Turchinovich, “Information system for network solar photometers,” Atmos. Ocean. Opt. 22 (1), 121–127 (2009).CrossRefGoogle Scholar
  69. 69.
    Yu. S. Turchinovich, D. M. Kabanov, and S. M. Sakerin, Certificate of State Registration of Computer Program no. 2014614193 of April 17, 2014.Google Scholar
  70. 70. Cited January 17, 2017.Google Scholar
  71. 71. Cited February 2, 2017.Google Scholar
  72. 72. Cited February 3, 2017.Google Scholar
  73. 73. Cited March 3, 2017.Google Scholar
  74. 74.
    S. M. Sakerin, D. M. Kabanov, V. S. Kozlov, V. V. Pol’kin, V. F. Radionov, and D. G. Chernov, “Comparative analysis of characteristics of atmospheric aerosol in polar regions of the Northern and Southern hemispheres,” Problemy Arktiki Antarktiki 107 (1), 74–83 (2016).Google Scholar
  75. 75.
    A. Lupi, M. Mazzola, R. S. Stone, E. G. Dutton, A. Herber, V. F. Radionov, B. N. Holben, M. G. Sorokin, S. M. Sakerin, S. A. Terpugova, P. S. Sobolewski, C. Lanconelli, B. H. Petkov, M. Busetto, and V. Vitale, “An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year,” Atmos. Environ. 52, 29–47 (2012).ADSCrossRefGoogle Scholar
  76. 76.
    B. Croft, R. V. Martin, W. R. Leaitch, P. Tunved, T. J. Breider, S. D. D’Andrea, and J. R. Pierce, “Processes controlling the annual cycle of Arctic aerosol number and size distributions,” Atmos. Chem. Phys. 16, 3665–3682 (2016).ADSCrossRefGoogle Scholar
  77. 77.
    V. V. Pol’kin, N. N. Shchelkanov, L. P. Golobokova, and M. V. Panchenko, “Comparison of the techniques for estimating the contribution of continental and marine sources into ion composition of near-water aerosol of the White Sea,” Atmos. Ocean. Opt. 21 (1), 17–19 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Terpugova
    • 1
    Email author
  • P. N. Zenkova
    • 1
  • D. M. Kabanov
    • 1
  • V. V. Pol’kin
    • 1
  • L. P. Golobokova
    • 2
  • M. V. Panchenko
    • 1
  • S. M. Sakerin
    • 1
  • A. P. Lisitzin
    • 3
  • V. P. Shevchenko
    • 3
  • N. V. Politova
    • 3
  • V. S. Kozlov
    • 1
  • T. V. Khodzher
    • 2
  • V. P. Shmargunov
    • 1
  • D. G. Chernov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Limnological Institute, Siberian BranchRussian Academy of SciencesIrkutskRussia
  3. 3.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations