Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 5, pp 492–501 | Cite as

Zonal Distribution of Aerosol Physicochemical Characteristics in the Eastern Atlantic

  • S. M. Sakerin
  • L. P. Golobokova
  • D. M. Kabanov
  • V. V. Pol’kin
  • V. F. Radionov
Optical Models and Databases
  • 8 Downloads

Abstract

Based on long-term (2004–2016) expedition studies, statistical generalization and zoning of aerosol physicochemical characteristics in the eastern Atlantic (from the English Channel to Antarctica) are performed. For six latitudinal zones of the Atlantic and Southern Oceans (>45°N; 20°–45°N; 0°–20°N; 0°–20°S; 20°–55°S; >55°S) the average values of the main aerosol characteristics are presented, i.e., atmospheric aerosol optical depth (AOD), fine and coarse AOD components, particle number concentrations, and mass concentrations of aerosol, black carbon, and water-soluble ions (Na+, Mg2+, Cl, K+, Ca2+, \(\rm{NH}_4^+, \rm{NO}_3^-, \rm{SO}_4^{2-}\)), as well as of gas admixtures (SO2, HCl, HNO3, NH3). It is shown that the zonal variability range of optical and microphysical aerosol characteristics is about an order of magnitude: the largest (minimal) average values are observed in the tropical zone (over Southern Ocean). The zonal differences (a factor of 1.3 to 4.3) in concentrations of ions and gas admixtures are much smaller and comparable to synoptic-scale variations. The concentrations of “marine” ions are maximal over the Southern Atlantic, and those of “continental” ions in the Northern hemisphere tropical and subtropical zones; the concentrations of all ions are minimal over the Southern Ocean. The specific features of geographic distribution of gas admixtures are noted: the maximal concentrations of HCl and NH3 are observed over the Southern Atlantic, those of SO2 and HNO3 near Europe, and the lowest level is observed in the tropical zone.

Keywords

aerosol optical depth concentrations of aerosol black carbon ions gas admixtures spatial distribution Eastern Atlantic Southern Ocean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. D. Barteneva, N. I. Nikitinskaya, G. G. Sakunov, and L. K. Veselova, Atmospheric Column Transparency in the Visible and IR (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  2. 2.
    K. S. Shifrin, V. M. Volgin, B. N. Volkov, O. A. Ershov, and A. V. Smirnov, “Optical depth of atmospheric aerosol over seas,” Issled. Zemli Kosmosa, No. 4, 21–30 (1985).Google Scholar
  3. 3.
    V. M. Volgin, O. A. Ershov, A. V. Cmirnov, and K. S. Shifrin, “Aerosol optical depth in typical sea regions,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 24 (10), 1058–1064 (1988).ADSGoogle Scholar
  4. 4.
    C. Tomasi and F. Prodi, “Measurement of atmospheric turbidity and vertical mass loading of particulate matter in marine environments (Red Sea, Indian Ocean, and Somalian Coast),” J. Geophys. Res. 87 (C2), 1279–1286 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    K. K. Moorthy, S. K. Satheesh, S. S. Baby, and A. Saha, “Large latitudinal gradients and temporal heterogeneity in aerosol black carbon and its mass mixing ratio over southern and northern oceans observed during a trans-continental cruise experiment,” Geophys. Res. Lett. 32, L14818 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    V. M. Kopeikin, I. A. Repina, E. I. Grechko, and B. I. Ogorodnikov, “Measurements of soot aerosol content in the near-water atmospheric layer in Southern and Northen semispheres,” Atmos. Ocean. Opt. 23 (6), 500–507 (2010).CrossRefGoogle Scholar
  7. 7.
    T. S. Bates, P. K. Quinn, D. S. Covert, D. J. Coffman, J. E. Johnson, and A. Wiedensohler, “Aerosol physical properties and controlling processes in lower marine boundary layer: A comparison of submicron data from ACE-1 and ACE-2,” Tellus B 52, 258–272 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    F. Raes, T. S. Bates, F. McGovern, and M. van Liedekerke, “The 2nd aerosol characterization experiment (ACE-2): General overview and main results,” Tellus B 52, 111–125 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    S. M. Sakerin and D. M. Kabanov, “Spatial inhomogeneities and the spectral behavior of atmospheric aerosol optical depth over the Atlantic Ocean,” J. Atmos. Sci. 59 (3), Part 1, 484–500 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    S. M. Sakerin, D. M. Kabanov, A. V. Smirnov, and B. N. Holben, “Aerosol optical depth of the atmosphere over ocean in the wavelength range 0.37–4 µm,” Int. J. Remote Sens. 29 (9), 2519–2547 (2008). doi 10.1080/01431160701767492ADSCrossRefGoogle Scholar
  11. 11.
    A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in maritime environments,” J. Atmos. Sci. 59 (3), Part 1, 501–523 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    A. P. Lisitzin, “Arid sedimentation in the oceans and atmospheric particulate matter,” Rus. Geol. Geophys. 52 (10), 1100–1133 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    D. M. Kabanov and S. M. Sakerin, “Transmission of the atmosphere over the Atlantic Ocean. Part 2. Variations of the aerosol optical thickness and moisture content,” Atmos. Ocean. Opt. 13 (8), 664–670 (2000).Google Scholar
  14. 14.
    S. M. Sakerin, D. M. Kabanov, V. V. Pol’kin, V. F. Radionov, B. N. Holben, and A. Smirnov, “Variations in aerosol optical and microphysical characteristics along the route of Russian Antarctic expeditions in the East Atlantic,” Atmos. Ocean. Opt. 30 (1), 89–102 (2017).CrossRefGoogle Scholar
  15. 15.
    O. D. Barteneva, L. K. Veselova, and N. I. Nikitinskaya, About Optical Properties of Atmospheric Aerosol of the Tropic Zone of the Atlantic, TROPEKS-72 (Gidrometeoizdat, Leningrad, 1974), p. 482–493 [in Russian].Google Scholar
  16. 16.
    K. S. Shifrin, V. A. Gashko, and B. V. Novogrudskii, Spectral Transparency of the Atmosphere over the Tropical Part of the Indian Ocean, Hydrophysical and Optical Research in the Indian Ocean (Nauka, Moscow, 1975), p. 164–170 [in Russian].Google Scholar
  17. 17.
    V. A. Gashko and K. S. Shifrin, “Spectral Transparency of the Atmosphere in the North-Western part of the Pacific,” Sea Optics (Nauka, Moscow, 1983), p. 190–194 [in Russian].Google Scholar
  18. 18.
    O. A. Ershov, A. V. Smirnov, and K. S. Shifrin, “Study of spectral transparency and halo in the atmosphere over ocean,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 26 (4), 388–394 (1990).Google Scholar
  19. 19.
    C. Tomasi, A. A. Kokhanovsky, A. Lupi, C. Ritter, A. Smirnov, M. Mazzola, R. S. Stone, C. Lanconelli, V. Vitale, B. N. Holben, S. Nyeki, C. Wehrli, V. Altonen, G. de Leeuw, E. Rodriguez, A. B. Herber, K. Stebel, A. Stohl, N. T. O' Neill, V. F. Radionov, T. Zielinski, T. Petelski, S. M. Sakerin, D. M. Kabanov, Y. Xue, L. Mei, L. Istomina, R. Wagener, B. McArthur, P. S. Sobolewski, J. Butler, R. Kivi, Y. Courcoux, P. Larouche, S. Broccardo, and S. J. Piketh, “Aerosol remote sensing in polar regions,” Earth-Sci. Rev. 140, 108–157 (2015).CrossRefGoogle Scholar
  20. 20.
    V. A. Smerkalov, Applied Atmospheric Optics (Gidrometeoizdat, St. Petersburg, 1997) [in Russian].Google Scholar
  21. 21.
    A. Smirnov, B. N. Holben, I. Slutsker, D. Giles, C. R. McClain, T. F. Eck, S. M. Sakerin, A. Macke, P. Croot, G. Zibordi, P. Quinn, J. Sciare, S. Kinne, M. Harvey, T. Smyth, S. Piketh, T. Zielinski, A. Proshutinsky, J. Goes, D. A. Seigel, P. Larouche, V. F. Radionov, P. Goloub, K. Krishnamoorthy, R. Matarrese, L. Robertson, and F. Jourdin, “Maritime aerosol network as a component of Aerosol Robotic Network,” J. Geophys. Res. 114, D06204 (2009). doi 10.1029/2008JD011257ADSCrossRefGoogle Scholar
  22. 22.
    S. M. Sakerin, N. I. Vlasov, D. M. Kabanov, K. E. Lubo-Lesnichenko, A. N. Prakhov, V. F. Radionov, Yu. S. Turchinovich, B. N. Holben, and A. Smirnov, “Results of spectral measurements of atmospheric aerosol optical depth with sun photometers in the 58th Russian Antarctic Expedition,” Atmos. Ocean. Opt. 27 (5), 393–402 (2014).CrossRefGoogle Scholar
  23. 23.
    S. M. Sakerin, D. M. Kabanov, M. V. Panchenko, and V. V. Pol’kin, “Latitude behavior and interrelations among the aerosol properties in the atmosphere over South Atlantic,” Atmos. Oceana Opt. 19 (7), 547–556 (2006).Google Scholar
  24. 24.
    S. M. Sakerin, A. V. Smirnov, D. M. Kabanov, V. V. Pol’kin, B. N. Holben, M. V. Panchenko, and O. V. Kopelevich, “Aerosol optical and microphysical properties over the Atlantic Ocean during the 19th cruise of the research vessel “Akademik Sergey Vavilov”,” J. Geophys. Res. 112, D10220 (2007). doi 10.1029/ 2006JD007947ADSCrossRefGoogle Scholar
  25. 25.
    S. M. Sakerin, A. A. Bobrikov, O. A. Bukin, L. P. Golobokova, Vas. V. Polkin, Vik. V. Polkin, K. A. Shmirko, D. M. Kabanov, T. V. Khodzher, N. A. Onischuk, A. N. Pavlov, V. L. Potemkin, and V. F. Radionov, “On measurements of aerosol-gas composition of the atmosphere during two expeditions in 2013 along Northern Sea Route,” Atmos. Chem. Phys. 15 (21), 12413–12443 (2015). doi.10.5194/acp-15-1-2015ADSCrossRefGoogle Scholar
  26. 26.
    K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. H. Wang, R. Frouin, M. A. Miller, S. Subramaniam, and W. M. Balch, “Maritime aerosol optical thickness measured by handheld sunphotometers,” Remote Sens. Environ., No. 93, 87–106 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).Google Scholar
  28. 28.
    S. M. Sakerin, D. M. Kabanov, and V. V. Polkin, “Estimate of latitudinal and longitudinal boundaries of aerosol regions in the East Atlantic,” Proc. SPIE 10466, 10466–19 (2017).Google Scholar
  29. 29.
    D. M. Kabanov, S. K. Gulev, B. N. Holben, V. F. Radionov, S. M. Sakerin, and A. Smirnov, “Latitudinal distribution of the aerosol optical depth over oceans in southern hemisphere,” Proc. SPIE. 9292, 9292940 (2014).ADSGoogle Scholar
  30. 30.
    J. G. Acker and G. Leptoukh, “Online analysis enhances use of NASA Earth Science Data,” Eos, Trans. Amer. Geophys. Union. 88, 14–17 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    S. M. Cakerin and D. M. Kabanov, “Correlations between the parameters of Angström formula and aerosol optical thickness of the atmosphere in the wavelength range from 1 to 4 µm,” Atmos. Ocean. Opt. 20 (3), 200–206 (2007).Google Scholar
  32. 32.
    V. V. Pol’kin, D. M. Kabanov, S. M. Sakerin, and L. P. Golobokova, “Comparative studies of optical and microphysical characteristics and chemical composition of aerosol over water basin of Caspian sea in the 29th and 41st cruises of RV Rift,” Atmos. Ocean. Opt. 27 (1), 16–23 (2014).CrossRefGoogle Scholar
  33. 33.
    S. M. Sakerin, L. P. Golobokova, D. M. Kabanov, V. V. Pol’kin, Yu. S. Turchinovich, T. V. Khodzher, and O. I. Khuriganova, “Spatiotemporal variations in aerosol characteristics along the route of the Indian-Atlantic Expedition onboard the research vessel “Akademik Nikolaj Strakhov”,” Atmos. Ocean. Opt. 30 (4), 349–359 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. M. Sakerin
    • 1
  • L. P. Golobokova
    • 2
  • D. M. Kabanov
    • 1
  • V. V. Pol’kin
    • 1
  • V. F. Radionov
    • 3
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Limnology Institute, Siberian BranchRussian Academy of SciencesIrkutskRussia
  3. 3.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations