Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 5, pp 519–531 | Cite as

Complex Assessment of Atmospheric Air Quality in the City of Gelendzhik

  • A. S. Safatov
  • A. P. Agafonov
  • M. Yu. Arshinov
  • A. M. Baklanov
  • B. D. Belan
  • G. A. Buryak
  • A. V. Fofonov
  • V. M. Generalov
  • A. S. Kozlov
  • N. A. Lapteva
  • S. B. Malyshkin
  • Yu. V. Marchenko
  • S. E. Olkin
  • I. K. Reznikova
  • A. N. Sergeev
  • D. V. Simonenkov
  • V. A. Ternovoi
  • Yu. V. Tumanov
  • V. P. Shmargunov
Optical Models and Databases
  • 13 Downloads

Abstract

The atmospheric air quality is determined by the concentrations of some gaseous pollutants and mass concentrations of aerosol particles of different sizes. A wide range of atmospheric pollutants in both gaseous and aerosol phases was studied in the vicinity of Gelendzhik in July 2009, simultaneously at several land sites, in the water area of the bay, and at altitudes of up to 2200m. No such complex experiments were carried out in that region before. The following characteristics of the atmospheric aerosol (3 nm–32 μm in size) were studied: elemental composition of particles (23 chemical elements) and concentrations of polyaromatic hydrocarbons (14 compounds), unsaturated hydrocarbons, total protein, biotoxins, and culturable microorganisms. The concentration fields of different air pollutants and the complex air pollution index were constructed using mathematical models of pollutant propagation and data on the hydrometeorological conditions during the period of measurements. The sources of aerosols in the region were detected from the study of the chemical composition of airborne particles. The results allowed us to estimate air pollutants and to calculate the complex air pollution index for the Gelendzhik area. The daily average concentrations of all the pollutants were compared to the daily average maximum permissible concentrations. All these concentrations were less than daily average maximum permissible concentrations. The complex air pollution index did not exceed 1. Hence, the air in the vicinity of Gelendzhik did not contain any significant pollutants in the period under study.

Keywords

air pollution air quality aerosol chemical composition aerosol biological composition aerosols sources PMx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Wark and C. F. Warner, Air Pollution: Its Origin and Control (Harper and Row Publishers, NY, 1981).Google Scholar
  2. 2.
    Y. H. Zhang, M. Hu, L. J. Zhong, A. Wiedensohler, S. C. Liu, M. O. Andreae, W. Wang, and S. J. Fan, “Regional integrated experiments on air quality over Pearl river delta 2004 (PRIDE-PRD2004): Overview,” Atmos. Environ. 42 (25), 6157–6173 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    I. Balcilar, A. Zararsiz, Y. Kalayci, G. Dogan, and G. Tuncel, “Chemical composition of eastern Black Sea aerosol—Preliminary results,” Sci. Total. Environ. 488–489, 422–428 (2014). doi 10.1016/j.scitotenv. 2013.12.023CrossRefGoogle Scholar
  4. 4.
    M. Marc, M. Tobiszewski, B. Zabiegala, M. de la Guardia, and J. Namiesnik, “Current air quality analytics and monitoring: A review,” Anal. Chim. Acta 853, 116–126 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Yu. Arshinov, B. D. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, A. S. Kozlov, G. S. Pevneva, D. V. Simonenkov, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 1. Geographic features and temporal dynamics,” Opt. Atmos. Okeana 30 (8), 716–722 (2017).Google Scholar
  6. 6.
    D. P. Starodymova, A. A. Vinogradova, V. P. Shevchenko, E. V. Zakharova, V. V. Sivonen, and V. P. Sivonen, “Elemental composition of near-ground aerosol near the northwestern coast of Kandalaksha Bay of the White Sea,” Atmos. Ocean. Opt. 31 (1), 181–186 (2018).CrossRefGoogle Scholar
  7. 7.
    P. S. Monks, C. Granier, S. Fuzzie, A. Stohl, M. L. Williams, H. Akimoto, M. Amann, A. Baklanov, U. Baltensperger, I. Bey, N. Blake, R. S. Blake, K. Carslaw, O. R. Cooper, F. Dentenero, D. Fowler, E. Fragkou, G. J. Frost, S. Generoso, P. Ginoux, V. Grewe, A. Guenther, H. C. Hansson, S. Henne, J. Hjorth, A. Hofzumahaus, H. Huntrieser, I. S. A. Isaksen, M. E. Jenkin, J. Kaiser, M. Kanakidou, Z. Klimont, M. Kulmala, P. Laj, M. G. Lawrence, J. D. Lee, C. Liousse, M. Maione, G. McFiggans, A. Metzger, A. Mieville, N. Moussiopoulos, J. J. Orlando, C. D. O' Dowd, P. I. Palmer, D. D. Parrish, A. Petzold, U. Platt, U. Poschl, A. S. H. Prevot, C. E. Reeves, S. Reimann, Y. Rudich, K. Sellegri, R. Steinbrecher, D. Simpson, H. Brink, J. Theloke, G. R. van der Werf, R. Vautard, V. Vestreng, C. Vlachokostas, and R. von Glasow, “Atmospheric composition change–global and regional air quality,” Atmos. Environ. 43 (33), 5268–5350 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    V. R. Despres, J. A. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich- Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological aerosols in the atmosphere: Observations and relevance,” Tellus B 64, 1–58 (2012).CrossRefGoogle Scholar
  9. 9.
    E. A. Joy, B. D. Horne, and S. Bergstrom, “Addressing air quality and health as a strategy to combat climate change,” Ann. Intern. Med. 164 (9), 626–627 (2016).CrossRefGoogle Scholar
  10. 10.
    A. S. Larr and M. Neidell, “Pollution and climate change,” Future Child 26 (1), 93–113 (2016).CrossRefGoogle Scholar
  11. 11.
    C. A. Pope, III, “Mortality effects of longer term exposures to fine particulate air pollution: review of recent epidemiological evidence,” Inhal. Toxicol. 19 (1), 33–38 (2007).CrossRefGoogle Scholar
  12. 12.
    T. Gordon, “Linking health effects to pm components, size, and sources,” Inhal. Toxicol. 19 (1), 3–6 (2007).CrossRefGoogle Scholar
  13. 13.
    H. R. Anderson, “Air pollution and mortality: A history,” Atmos. Environ. 43 (1), 142–152 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Fang, V. Naik, L. W. Horowitz, and D. L. Mauzerall, “Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present,” Atmos. Chem. Phys. 13, 1377–1394 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    K.-H. Kim, E. Kabir, and S. Kabir, “A review on the human health impact of airborne particular matter,” Environ. Int. 74, 136–143 (2015).CrossRefGoogle Scholar
  16. 16.
    B. Brunekreef and R. L. Maynard, “A note on the 2008 EU standards for particulate matter,” Atmos. Environ. 42 (26), 6425–6430 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    M. Krzyzanowski and A. Cohen, “Update of WHO air quality guidelines,” Air Qual. Atmos. Health 1, 7–13 (2008).CrossRefGoogle Scholar
  18. 18.
    C. Vahlsing and K. R. Smith, “Global review of national ambient air quality standards for PM10 and SO2 (24 h),” Air Qual. Atmos. Health 5 (4), 393–399 (2012).CrossRefGoogle Scholar
  19. 19.
    B. Brunekreef, N. Kunzil, J. Pekkanen, I. Annesi- Maesano, B. Forsberg, T. Sigsgaard, M. Keuken, F. Forastiere, M. Barry, X. Querol, and R. Harrison, “Clear air in Europe: Beyond the horizon?,” Eur. Respire. J. 45, 7–10 (2015).CrossRefGoogle Scholar
  20. 20.
    K. Kuklinska, L. Wolska, and J. Namiesnik, “Air quality policy in the U.S. and the EU—a review,” Atmos. Pollut. Res 6 (1), 129–137 (2015).CrossRefGoogle Scholar
  21. 21.
    X. Qiao, D. Jaffe, Y. Tang, M. Bresnahan, and J. Song, “Evaluation of air quality in Chengdu, Sichuan basin, China: Are China’s air quality standards sufficient yet?” Environ. Monit. Assess 187 (5), 250 (2015).CrossRefGoogle Scholar
  22. 22.
    RD 52.04.186-89. Guidelines for Air Pollution Control (Goskomgidromet SSSR, Moscow, 1991) [in Russian].Google Scholar
  23. 23.
    Review of the National Ambient Air Quality Standards for Particulate Matter: Policy Assessment of Scientific and Technical Information OAQPS Staff Paper. https:// www3.epa.gov/ttn/naaqs/standards/pm/data/1996pmstaffpaper. pdf (Cited November 13, 2017).Google Scholar
  24. 24.
    Yu. M. Timofeyev, Ya. A. Virolainen, S. P. Smyshlyaev, and M. A. Motsakov, “Ozone over St. Petersburg: Comparison of experimental data and numerical simulation,” Atmos. Ocean. Opt. 30 (3), 263–268 (2017).CrossRefGoogle Scholar
  25. 25.
    B. J. Reich, M. Fuentes, and J. Burke, “Analysis of the effects of ultrafine particulate matter while accounting for human exposure,” Environmetrics 20 (2), 131–146 (2008).MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Helleburst, A. Allanic, I. P. O’Connor, C. Jourdan, D. Healy, and J. R. Sodeau, “Sources of ambient concentrations and chemical composition of PM2.5–0.1 in Cork Harbour, Ireland,” Atmos. Res. 95 (2–3), 136–149 (2010).CrossRefGoogle Scholar
  27. 27.
    G. Spindler, E. Bruggemann, T. Gnauk, A. Gruner, K. Muller, and H. Herrmann, “A four-year size-segregated characterization study of particles PM10, PM2.5, and PM1 Depending on air mass origin at Melpitz,” Atmos. Environ. 44 (2), 164–173 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    P. Quiencey and D. Butterfield, “Ambient air particulate matter PM10 and PM2.5: Developments in European measurement methods and legislation,” Biomarkers 14 (1), 34–38 (2009).CrossRefGoogle Scholar
  29. 29.
    A. F. Poryadin and A. D. Khovanskii, Estimation and Control of the Natural Environment Quality (NUMTs Minprirody Rossii, ID Priboi, Moscow, 1996) [in Russian].Google Scholar
  30. 30.
    GOST 17.2.1.03-84. Natural Conservancy. Atmosphere. Terms and Definitions of Pollution Control (Izd. Standartov, Moscow, 1984) [in Russian].Google Scholar
  31. 31.
    GN 2.1.6.1338-03. Health Standards. Maximum Permissible Concentrations (MPC) of Pollutants in the Atmospheric Air of Populated Areas (STK Ayaks, Moscow, 2003) [in Russian].Google Scholar
  32. 32.
    GN 2.1.6.2604-10. Health Standards. Maximum Permissible Concentrations (MPC) of Pollutants in the Atmospheric Air of Populated Areas, Suppl. 8 to GN 2.1.6.1338-03 (Federal’nyi Tsentr Gigieny i Epidemiologii Rospotrebnadzora, Moscow, 2010) [in Russian].Google Scholar
  33. 33.
    H. Bardouki, H. Liakakoku, C. Economou, J. Sciare, J. Smolik, V. Zdimal, K. Eleftherriadis, M. Lazaridis, C. Dye, and N. Mihalopoulos, “Chemical composition of size-resolved atmospheric aerosols in the Eastern Mediterranean during summer and winter,” Atmos. Environ. 37 (2), 195–208 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    J. H. Kroll and J. H. Seinfeld, “Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere,” Atmos. Environ. 42 (16), 3593–3624 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    J. R. Brook, K. L. Demerjian, G. Hidy, L. T. Molina, W. T. Pennell, and R. Scheffe, “New directions: Results-oriented multi-pollutant air quality management,” Atmos. Chem. Phys. 43 (12), 2091–2093 (2009).Google Scholar
  36. 36.
    A. Zelenyuk, M. J. Ezell, V. Perraud, S. N. Johnson, E. A. Bruns, Y. Yu, D. Imre, M. L. Alexander, and B. J. Finlayson-Pitts, “Characterization of organic coatings on hygroscopic salt particles and their atmospheric impacts,” Atmos. Environ. 44 (9), 1209–1218 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    U. Poschl, “Atmospheric aerosols: Composition, transformation, climate and health effects,” Angew. Chem. 44 (46), 7520–7540 (2005).CrossRefGoogle Scholar
  38. 38.
    A. Boobis, R. Budinsky, S. Collie, K. Crofton, M. Embry, S. Felter, R. Hertzberg, D. Kopp, G. Mihlan, M. M. Mumtaz, P. Price, K. Solomon, L. Teuschler, R. Yang, and R. Zaleski, “Critical analysis of literature on low-dose synergy for use in screening chemical mixtures for risk assessment,” Crit. Rev. Toxicol. 41 (5), 369–383 (2011).CrossRefGoogle Scholar
  39. 39.
    How to Organize Public Environmental Monitoring. Guidelines for Non-governmental Organizations, Ed. by M. V. Khotulevoi (M., 1997) [in Russian].Google Scholar
  40. 40.
    A. Ankilov, A. Baklanov, M. Colhoun, K.-H. Enderle, J. Gras, Yu. Julanov, D. Kaller, A. Lindner, A. A. Lushnikov, R. Mavliev, F. McGovern, A. Mirme, T. C. O’Connor, J. Podzimek, O. Preining, G. P. Reischl, R. Rudolf, G. J. Sem, W. W. Szymanski, E. Tamm, A. E. Vrtala, P. E. Wagner, W. Winklmayr, and V. Zagaynov, “Intercomparison of number concentration measurements by various aerosol particle counters,” Atmos. Res. 62 (3–4), 177–207 (2002).CrossRefGoogle Scholar
  41. 41.
    APA Filters. Catalogue-Guide (Atomizdat, Moscow, 1970) [in Russian].Google Scholar
  42. 42.
    RD 52.04.333-93. Chromatographic Method for Estimation of Concentrations of Chlorides, Nitrates, Sulfates, Lithium, Ammonium, and Potassium in Atmospheric Precipitation (State Committee of RF on Hydrometeorology, Moscow, 1993) [in Russian].Google Scholar
  43. 43.
    W. W. You, R. P. Haugland, D. K. Ryan, and R. P. Haugland, “3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, a reagent with broad dynamic range for the assay of proteins and lipoproteins in solution,” Anal. Biochem. 244 (2), 277–282 (1997).CrossRefGoogle Scholar
  44. 44.
    RD 52.44.589-97. Estimation of the Mass Concentration of Priority Polycyclic Aromatic Hydrocarbons in Atmospheric Air. Reversed Liquid Chromatography Measurement Technique (Institute of Global Climate and Ecology, Moscow, 1997) [in Russian].Google Scholar
  45. 45.
    RD 52.24.476-2007. Mass Concentration of Oil Products in Waters. IR Photometric measurement Technique (Hydrochemical Institute, Rostov-on-Don, 2007) [in Russian].Google Scholar
  46. 46.
    N. Lang-Yona, Y. Lehahn, B. Herut, N. Burshtein, and Y. Rudich, “Marine aerosol as possible source for endotoxins in coastal areas,” Sci. Total Environ. 499, 311–318 (2014).ADSCrossRefGoogle Scholar
  47. 47.
    A. N. Sergeev, A. S. Safatov, A. P. Agafonov, I. S. Andreeva, M. Yu. Arshinov, B. D. Belan, G. A. Buryak, V. M. Generalov, Yu. R. Zakharova, N. A. Lapteva, S. E. Ol’kin, M. V. Panchenko, V. V. Parfenova, I. K. Reznikova, D. V. Simonenkov, T. V. Teplyakova, and V. A. Ternovoi, “Comparison of the presence of chemical and biomarkers in the surface microlayer in water areas of health resort zones of Lake Baikal and in atmospheric aerosol of this region,” Atmos. Ocean. Opt. 22 (4), 467–477 (2009).CrossRefGoogle Scholar
  48. 48.
    B. M. Desyatkov, S. R. Sarmanaev, and A. I. Borodulin, “Numerical-analytical model of the aerosol transport in a thermally stratified boundary layer of the atmosphere,” Atmos. Ocean. Opt. 9 (6), 517–520 (1996).Google Scholar
  49. 49.
    A. I. Borodulin, B. M. Desyatkov, and A. A. Yarygin, Computer Program. Reg. No. 2007610293, January 16, 2007.Google Scholar
  50. 50.
    B. M. Desyatkov and N. A. Lapteva, “Method for constructing optimal network monitoring stations of gases and aerosols emissions,” Opt. Atmos. Okeana 30 (4), 354–359 (2017).Google Scholar
  51. 51.
    I. Kopanakis, K. Eleftheriadis, N. Mihalopoulos, N. Lydakis-Simantiris, E. Katsivela, D. Pentari, P. Zarmpas, and M. Lazaridis, “Physico-chemical characteristics of particulate matter in the Eastern Mediterranean,” Atmos. Res. 106, 93–107 (2012).CrossRefGoogle Scholar
  52. 52.
    E. Koulouri, S. Saarikoski, C. Theodosi, Z. Markaki, E. Gerasopoulos, G. Kouvarakis, T. Makela, R. Hillamo, and N. Mihalopoulos, “Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean,” Atmos. Environ. 42 (26), 6542–6550 (2008).ADSCrossRefGoogle Scholar
  53. 53.
    X. Querol, A. Alastuey, J. Pey, M. Cusak, N. Perez, M. Mihalopoulos, C. Theodosi, E. Gerasopoulos, N. Kubilay, and M. Kocak, “Variability in regional background aerosols within the Mediterranean,” Atmos. Chem. Phys. 9 (14), 4575–4591 (2009).ADSCrossRefGoogle Scholar
  54. 54.
    K. Adachi and P. R. Buseck, “Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere,” Atmos. Environ. 100, 1–9 (2015).ADSCrossRefGoogle Scholar
  55. 55.
    T. Zielinski, “Studies of aerosol physical properties in coastal area,” Aerosol Sci. Technol. 38 (5), 513–524 (2004).ADSCrossRefGoogle Scholar
  56. 56.
    C. Perrino, S. Caneperi, M. Catrambone, Torre S. Dalla, E. Rantica, and T. Sargolini, “Influence of natural events on the concentration and composition of atmospheric particulate matter,” Atmos. Environ. 43 (31), 4766–4779 (2009).ADSCrossRefGoogle Scholar
  57. 57.
    Aerosols—Science and Technology, Ed. by I. E. Agranovski (Wiley, Wienheim, 2010).Google Scholar
  58. 58.
    T. S. Bates, P. K. Quinn, A. A. Frossard, L. M. Russell, J. Hakala, T. Petaja, M. Kulmala, D. S. Covert, C. D. Cappa, S.-M. Li, K. L. Hayden, I. Nuaaman, R. McLaren, P. Massoli, M. R. Canagaranta, T. B. Onasch, D. Sueper, D. R. Worsnop, and W. C. Keene, “Measurements of Ocean derived aerosol off the coast of California,” J. Geophys. Res. 117 (D21), V15 (2012).CrossRefGoogle Scholar
  59. 59.
    Y. Tong and B. Lighthart, “Diurnal distribution of total and culturable atmospheric bacteria at a rural site,” Aerosol Sci. Technol. 30 (2), 246–254 (1999).ADSCrossRefGoogle Scholar
  60. 60.
    Y. Tong and B. Lighthart, “The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon,” Aerosol Sci. Technol. 32 (5), 393–403 (2000).ADSCrossRefGoogle Scholar
  61. 61.
    A. S. Safatov, T. V. Teplyakova, B. D. Belan, G. A. Buryak, I. G. Vorob’eva, I. N. Mikhailovskaya, M. V. Panchenko, and A. N. Sergeev, “Atmospheric aerosol fungi concentration and diversity in the south of Western Siberia,” Atmos. Ocean. Opt. 23 (1), 73–80 (2010).CrossRefGoogle Scholar
  62. 62.
    S. M. Burrows, W. Elbert, M. G. Lawrence, and U. Poschl, “Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems,” Atmos. Chem. Phys. 9 (23), 9263–9280 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Safatov
    • 1
  • A. P. Agafonov
    • 1
  • M. Yu. Arshinov
    • 2
  • A. M. Baklanov
    • 3
  • B. D. Belan
    • 2
  • G. A. Buryak
    • 1
  • A. V. Fofonov
    • 2
  • V. M. Generalov
    • 1
  • A. S. Kozlov
    • 3
  • N. A. Lapteva
    • 1
  • S. B. Malyshkin
    • 3
  • Yu. V. Marchenko
    • 1
  • S. E. Olkin
    • 1
  • I. K. Reznikova
    • 1
  • A. N. Sergeev
    • 1
  • D. V. Simonenkov
    • 2
  • V. A. Ternovoi
    • 1
  • Yu. V. Tumanov
    • 1
  • V. P. Shmargunov
    • 2
  1. 1.State Research Center of Virology and Biotechnology VECTORRospotrebnadzorKoltsovo, Novosibirsk oblastRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  3. 3.Voevodsky Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations