Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 5, pp 445–450 | Cite as

Estimates of the Refractive Index and Regular Refraction of Optical Waves in the Atmospheric Boundary Layer: Part 2, Laser Beam Refraction

  • S. L. OdintsovEmail author
  • V. A. Gladkikh
  • A. P. Kamardin
  • V. P. Mamyshev
  • I. V. Nevzorova
Optical Waves Propagation

Abstract

Possible displacements of laser beams in the atmospheric boundary layer under the effect of regular refraction are calculated. The case where a radiation source is located at the level of underlying surface is considered. The displacements are estimated for different wavelengths and angles of the beam entrance into the atmosphere. The calculations are based on experimental data on the optical refractive index up to an altitude of 1000 m received in long-term (1 year) measurements of the vertical air temperature profiles with a MTP-5 meteorological temperature profiler.

Keywords

laser radiation atmospheric boundary layer refractive index refraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, I. V. Nevzorova, and V. A. Fedorov, “Estimates of the refractive index and regular refraction of optical waves in the atmospheric boundary layer. Part 1. Refractive index,” Atmos. Ocean. Opt. 31 (5), 437–444 (2018).Google Scholar
  2. 2.
    V. V. Kolosov, V. V. Dudorov, G. A. Filimonov, A. S. Panina, and M. A. Vorontsov, “Accounting for the effect of large-scale atmospheric inhomogeneities in problems of laser radiation propagation along long high-altitude paths,” Atmos. Oceanic Opt. 27 (2), 123–129 (2014).CrossRefGoogle Scholar
  3. 3.
    S. V. Asanov, V. V. Belov, A. D. Bulygin, Yu. E. Geints, V. V. Dudorov, A. A. Zemlyanov, A. B. Ignat’ev, F. Yu. Kanev, V. V. Kolosov, P. A. Konyaev, V. P. Lukin, G. G. Matvienko, V. V. Morozov, V. V. Nosov, Yu. N. Ponomarev, I. V. Ptashnik, and M. V. Tarasenkov, “Optical model of the Earth’s atmosphere for intense laser emission in the near and mid-infrared spectral ranges,” Opt. Atmos. Okeana 28 (4), 338–345 (2015).Google Scholar
  4. 4.
    S. V. Asanov, Yu. E. Geints, A. A. Zemlyanov, A. B. Ignat’ev, G. G. Matvienko, V. V. Morozov, and A. V. Tarasenkova, “Forecast of intense near- and mid- IR laser radiation propagation along slant atmospheric paths,” Atmos. Ocean. Opt. 29 (4), 315–323 (2016).CrossRefGoogle Scholar
  5. 5.
    E. N. Kadygrov and I. N. Kuznetsova, Guidelines for the Use of Profiler Remote Measurement Data on Temperature Profiles in the Atmospheric Boundary Layer: Theory and Practice (Fizmatkniga, Dolgoprudnyi, 2015) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. L. Odintsov
    • 1
    Email author
  • V. A. Gladkikh
    • 1
  • A. P. Kamardin
    • 1
  • V. P. Mamyshev
    • 1
  • I. V. Nevzorova
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations