Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 5, pp 486–491 | Cite as

Interannual Variability of Surface and Integrated Water Vapor and Atmospheric Circulation in Europe

  • O. G. KhutorovaEmail author
  • V. E. Khutorov
  • G. M. Teptin
Atmospheric Radiation, Optical Weather, and Climate
  • 15 Downloads

Abstract

The variability of time series of the integrated water vapor of the atmosphere and the surface partial pressure of water vapor for the territory of Europe over a long period have been studied. The main contribution to the variance of both integrated and surface water vapor is made by seasonal variations of 60–70%; mesoscale processes, 7–17%; and synoptic processes, 17–27%. The linear trend contributes less than 1% to the overall variance of the variability of the atmospheric water vapor in Europe. It has been shown that the interannual variability of the atmospheric water vapor manifests itself both in quasi-periodic variations in the annual average values and in variations in the intensity of synoptic processes. The irregular coherence of variations in the circulation indices and surface partial water vapor pressure in Europe with periods of 2–3, 5–6, 8–11, and 10–13 years has been established.

Keywords

atmospheric integrated water vapor water vapor partial pressure interannual processes remote sensing by satellite navigation systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bevis, S. Businger, T. A. Herring, C. Rocken, and A. Anthes, “GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System,” J. Geophys. Res., D 97 (14), 15787–15801 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    J. Glowacki, N. T. Penna, and W. P. Bourke, “Validation of GPS-based estimates of integrated water vapor for the Australian region and identification of diurnal variability,” Aust. Met. Mag. 55, 131–148 (2006).Google Scholar
  3. 3.
    T. Ning, R. Haas, G. Elgered, and U. Willen, “Multitechnique comparisons of 10 years of wet delay estimates on the west coast of Sweden,” J. Geodesy. 86 (7), 565–575 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    R. Pacione, E. Fionda, and R. Ferrara, “Comparison of atmospheric parameters derived from GPS, VLBI and a ground-based microwave radiometer in Italy,” Phys. Chem. Earth. 27, 309–316 (2002).CrossRefGoogle Scholar
  5. 5.
    J. A. Roman, R. O. Knuteson, S. A. Ackerman, D. C. Tobin, and H. E. Revercomb, “Assessment of regional global climate model water vapor bias and trends using precipitable water vapor observations from a Network of Global Positioning Satellite Receivers in the U.S. Great Plains and Midwest,” Climate. 25, 5471–5493 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    L. Guoping, H. Dingfa, and L. Biquan, “Experiment on driving precipitable water vapor from ground-based GPS Network in Chengdu Plain,” Geo-Spat. Inf. Sci. 10, 181–185 (2007).CrossRefGoogle Scholar
  7. 7.
    J. Shuanggen, Z. Li, and J. Choa, “Integrated water vapor field and multiscale variations over China from GPS measurements,” J. Appl. Meteorol. Climatol. 47, 3008–3015 (2000).Google Scholar
  8. 8.
    S. Raju, K. Saha, and V. T. Bijoy, “Measurement of integrated water vapor over Bangalore using ground based GPS data,” Proc. URSI General Assembly. New Delphi, 20–24 (2005).Google Scholar
  9. 9.
    L. Sapucci, L. Machado, and J. Monico, “Intercomparison of integrated water vapor estimates from multisensors in the Amazonian region,” J. Atmos. Ocean. Technol. 24, 1880–1894 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    E. Jakobson, H. Ohvril, and G. Elgered, “Diurnal variability of precipitable water in the Baltic region, impact on the transmittance of the direct solar radiation,” Boreal Environ. Res. 14, 45–55 (2009).Google Scholar
  11. 11.
    R. Haas, T. Ning, and G. Elgered, “Long-term trends in the amount of atmospheric water vapour derived from space geodetic and remote sensing techniques,” in ESA Proc. WPP 326 (Copenhagen, 2011).Google Scholar
  12. 12.
    J. Morland Coen M. Collaud, and K. Hocke, “Tropospheric water vapor above Switzerland over the 12 years,” Atmos. Chem. Phys. 9, 5975–5988 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    G. P. Kurbatkin and V. D. Smirnov, “Tropospheric temperature interannual variations associated with decadal changes in the North Atlantic Oscillation,” Izv., Atmos. Ocean. Phys. 46 (4), 435–447 (2010).CrossRefGoogle Scholar
  14. 14.
    Yu. P. Perevedentsev, K. M. Shantalinskii, T. R. Aukhadeev, N. V. Ismagilov, and R. Zandi, “Effect of microcirculation systems on the thermobaric regime of Volga Federal District,” Uchen. Zapiski Kazanskogo Univ. 156 (2), 156–169 (2014).Google Scholar
  15. 15.
    A. Yu. Kanukhina, L. A. Nechaeva, A. I. Pogorel’tsev, and E. V. Suvorova, “Climatic trends in temperature, zonal flow, and stationary planetary waves from NCEP/NCAR reanalysis data,” Izv., Atmos. Ocean. Phys. 43 (6), 754–763 (2007).CrossRefGoogle Scholar
  16. 16.
    K. Yu. Sukovatov and N. N. Bezuglova, “Coherent oscillations of cold-season precipitation on the territory of the Ishim plain and atmospheric circulation indices,” Rus. Meteorol. Hydrol. 40 (1), 18–26 (2015).Google Scholar
  17. 17.
    O. G. Khutorova, V. V. Kalinnikov, and T. R. Kurbangaliev, “Variations in the atmospheric integrated water vapor from phase measurements made with receivers of satellite navigation systems,” Atmos. Ocean. Opt. 25 (6), 429–433 (2012).CrossRefGoogle Scholar
  18. 18.
    http//igscb.jpl.nasa.gov (Cited June 13, 2017).Google Scholar
  19. 19.
    G. Jenkins and D. Watts, Spectral Analysis and Its Applications (Holden-Day, San Francisco, 1968).zbMATHGoogle Scholar
  20. 20.
    T. B. Zhuravleva and K. M. Firsov, “On variability of the radiative characteristics in the 940-nm band at variations of water vapor: Numerically simulated results,” Atmos. Ocean. Opt. 18 (9), 696–702 (2005).Google Scholar
  21. 21.
    T. Yu. Chesnokova, T. B. Zhuravleva, Yu. V, Voronina, T. K. Sklyadneva, N. Ya. Lomakina, and A. V. Chentsov, “Simulation of solar radiative fluxes using altitude profiles of water vapor concentration, characteristic for conditions of Western Siberian,” Atmos. Ocean. Opt. 25 (2), 147–153 (2012).CrossRefGoogle Scholar
  22. 22.
    O. G. Khutorova and G. M. Teptin, “An investigation of mesoscale wave processes in the surface layer using synchronous measurements of atmospheric parameters and admixtures,” Izv., Atmos. Ocean. Phys. 45 (5), 549–556 (2009).CrossRefGoogle Scholar
  23. 23.
    O. N. Bulygina, V. M. Veselov, V. N. Razuvaev, and T. M. Aleksandrova, Description of the array of current data on key meteorological parameters at Russian stations. http://meteo.ru/data/163-basic-parameters (Cited June 15, 2017).Google Scholar
  24. 24.
    E. Ruprecht, S. S. Schroder, and S. Ubl, “On the relation between NAO and water vapour transport toward Europe,” Meteorol. Z. 11 (6), 395–401 (2002).CrossRefGoogle Scholar
  25. 25.
    M. Yu. Bardin and A. B. Polonskii, “North Atlantic Oscillation and synoptic variability in the European-Atlantic region in winter,” Izv., Atmos. Ocean. Phys. 41 (2), 127–136 (2005)Google Scholar
  26. 26.
    I. I. Mokhov, V. A. Semenov, V. Ch. Khon, M. Latif, and E. Rekner, “Connection between Eurasian and North Atlantic climate anomalies and natural variations in the Atlantic thermohaline circulation based on long-term model calculations,” Dokl. Earth Sci. 419 (2), 502–505 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    C. Franzke and S. B. Feldstein, “The continuum and dynamics of Northern hemisphere teleconnection patterns,” J. Atmos. Sci. 62 (9), 3250–3267 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    D. W. J. Thompson and J. M. Wallace, “The Arctic oscillation signature in the wintertime geopotential height and temperature fields,” Geophys. Res. Lett. 25 (9), 1297–1300 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    A. G. Barnston and R. E. Livezey, “Classification, seasonality and persistence of low-frequency atmospheric circulation patterns,” Mon. Weather Rev. 115, 1083–1126 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    P. Terray, “Southern hemisphere extra-tropical forcing: A new paradigm for El Nino-Southern Oscillation,” Clim. Dyn. 36 (11–12), 2171–2199 (2011).CrossRefGoogle Scholar
  31. 31.
    M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39 (2), 179–229 (2001).ADSCrossRefGoogle Scholar
  32. 32.
    V. A. Bezverkhnii and A. N. Gruzdev, “Relation between quasi-decadal and quasi-biennial oscillations of solar activity and the equatorial stratospheric wind,” Dokl. Earth Sci. 415 (2), 970–974 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. G. Khutorova
    • 1
    Email author
  • V. E. Khutorov
    • 1
  • G. M. Teptin
    • 1
  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations