Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 2, pp 201–215 | Cite as

Systematization of Sources of Data on Spectral Line Parameters for the CO2 Molecule and Its Isotopologues in the W@DIS Information System

  • A. V. Kozodoev
  • A. I. Privezentsev
  • A. Z. Fazliev
  • N. N. Filippov
Optical Models and Databases
  • 18 Downloads

Abstract

Spectral line profiles are used to process experimental spectra when solving the inverse problem of computing the collisional parameters of the profiles [1]. The difference in their shapes is due to different physical conditions (hard/soft collisions, high/low pressures, etc.). Numerous different profiles are used in the study of the spectral line parameters of carbon dioxide, methane, methyl halides, and other molecules. The diversity of the line profiles used in the systematization of spectral line parameters adds complexity to the structures of data available in information systems and to the structures of individuals involved in ontological descriptions of the spectral line properties, which characterize the line profiles. A brief classification of spectral line profiles and their parameters is given, and the results of the systematization of spectral data relating to different line profiles used in processing carbon dioxide spectra are presented. The line profiles available in the library are described, and a system is built for importing spectral line parameters derived from the solution of the direct and inverse problems. Computer software for an automatic description of the properties of the solutions imported has been developed. The basic properties of the spectral data compiled in the W@DIS information system provide a description of the outcome of the imported data quality assessment.

Keywords

line profile classification carbon dioxide line profiles W@DIS information system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Bykov, A. Z. Fazliev, N. N. Filippov, A. V. Kozodoev, A. I. Privezentsev, L. N. Sinitsa, M. V. Tonkov, and M. Yu. Tretyakov, “Distributed information system on atmospheric spectroscopy,” Geophys. Res. Abstr. 9, 01906 (2007).Google Scholar
  2. 2.
    R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, K. Fox, L. S. Rothman, and J. S. Garing, AFCRL Atmospheric Absorption Line Parameters Compilation. Environmental Research Paper No. 434 (Air Force Systems Command, USAF, 1973).Google Scholar
  3. 3.
    A. Chedin, N. Husson, N. A. Scott, I. Jobard, I. Cohen-Hallaleh, and A. Berroir, La banque de donnes GEISA, Description et logiciel d’utilisation. Internal Rep. LMD 108 (Ecole Polytechnique, Palaiseau, France, 1980).Google Scholar
  4. 4.
    L. S. Rothman, I. E. Gordon, C. Hill, R. V. Kochanov, P. Wcislo, and J. Wilzewski, “HITRAN in the XXI-st century: Beyond Voigt and beyond Earth,” in Abstr. 70th Inter. Sympos. Mol. Spectrosc, June 20, 2015, Illinois. Champaign-Urbana. http://hdl.handle.net/2142/79346/Google Scholar
  5. 5.
    L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. Carleer, C. Jr. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, Auwera J. Vander, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96 (2), 139–204 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    A. G. Császár, A. Z. Fazliev, and J. Tennyson, “W@DIS—Prototype information system for systematization of spectral data of water,” in Abstr. 20th Colloquium High Resolution Mol. Spectrosc., 2007, p. 270–271. http://vesta.u-bourgogne.fr/hrms/Program/AbsBk. pdf.gz.Google Scholar
  7. 7.
    N. Lavrentiev, A. Privezentsev, N. Filippov, and A. Fazliev, “Complete set of published spectral data on CO2 molecule,” in Abstr. 22nd Colloquium High Resolution Mol. Spectrosc. 2011, p. 353–354.Google Scholar
  8. 8.
    T. Hikida, K. M. T. Yamada, M. Fukabori, T. Aoki, and T. Watanabe, “Intensities and self-broadening coefficients of the CO2 ro-vibrational transitions measured by a near-IR diode laser spectrometer,” J. Mol. Spectrosc. 232 (2), 202–212 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    W. Voigt, “The distribution of intensity within spectral lines,” Phys. Z. 14, 377–381 (1913).Google Scholar
  10. 10.
    P. W. Anderson, “Pressure broadening in the microwave and infrared regions,” Phys. Rev. 76, 647–661 (1949).ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218 (1961).ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    M. Nelkin and A. Ghatak, “Simple binary collision model for Van Hove’s Gs(r, t),” Phys. Rev. 135, 4 (1964).Google Scholar
  13. 13.
    S. G. Rautian and I. I. Sobel’man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).ADSCrossRefGoogle Scholar
  14. 14.
    R. Ciurylo, “Shapes of pressure-and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. 58, 1029 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    P. W. Rosenkranz, Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23 (4), P. 498 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    A. S. Pine, “Line mixing sum rules for the analysis of multiplet spectra,” J. Quant. Spectrosc. Radiat. Transfer. 57 (2), 145–155 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    E. W. Smith, “Absorption and dispersion in the O2 microwave spectrum at atmospheric pressures,” J. Chem. Phys. 74, 6658 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    A. Predoi-Cross, Caiyan Luo, R. Berman, J. R. Drummond, and A. D. May, “Line strengths, self-broadening, and line mixing in the 2000 ← 0110 (Σ ← Π) Q branch of carbon dioxide,” J. Chem. Phys. 112, 8367 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    A. Predoi-Cross, A. D. May, A. Vitcu, J. R. Drummond, J.-M. Hartmann, and C. Boulet, “Broadening and line mixing in the 2000 ← 0110, 1110 ← 0000 and 1220 ← 0110Q branches of carbon dioxide: Experimental results and energy-corrected sudden modeling,” J. Chem. Phys. 120 (22), 10520 (2004). doi 10.1063/1.1738101ADSCrossRefGoogle Scholar
  20. 20.
    P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12 (9), 1331–1342 (1972).ADSCrossRefGoogle Scholar
  21. 21.
    F. Rohart, H. Mader, and H.-W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions: Studies on CH3F by millimeter wave coherent transients,” J. Chem. Phys. 101 (8), 6475 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    D. Lisak, D. K. Havey, and J. T. Hodges, “Spectroscopic line parameters of water vapor for rotationvibration transitions near 7180 cm–1,” Phys. Rev., A 79 (5), 052507 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    N. H. Ngo, D. Lisak, H. Tran, and J.-M. Hartmann, “An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes,” J. Quant. Spectrosc. Radiat. Transfer 129, 89–100 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    F. Pinter, “Rotational combination line width of N2 and CO2 as a function of the quantum number J,” Opt. Spectrosc. 17 (5), 428 (1964).ADSGoogle Scholar
  25. 25.
    C. Boulet, E. Arie, J. P. Bouanich, and N. Lacome, “Tsao et Curnutte au calcul des largeurs des raies de CO2 pur, et perturbe par N2,” Can. J. Phys. 50 (18), 2178–2185 (1972). doi 10.1139/p72–288ADSCrossRefGoogle Scholar
  26. 26.
    L. D. Tubbs and D. Williams, “Broadening of infrared absorption lines at reduced temperatures: Carbon dioxide,” J. Opt. Soc. Am. 62 (2), 284–289 (1972). doi 10.1364/JOSA.62.000284ADSCrossRefGoogle Scholar
  27. 27.
    C. Young, R. W. Bell, and R. E. Chapman, “Variation of N2-broadened collisional width with rotational quantum number for the 10.4-μm CO2 band,” Appl. Phys. Lett. 20 (8), 278 (1972). doi 10.1063/1.1654148ADSCrossRefGoogle Scholar
  28. 28.
    C. Boulet, P. Isnard, and E. Arie, “Largeurs des raies de la transition 00°1 > (10°0; 02°0)I de CO2 perturbe par l’argon,” J. Quant. Spectrosc. Radiat. Transfer 14 (7), 637–649 (1974). doi 10.1016/0022-4073(74)90039-9ADSCrossRefGoogle Scholar
  29. 29.
    T. W. Meyer, C. K. Rhodes, and H. A. Haus, “Highresolution line broadening and collisional studies in CO2 using nonlinear spectroscopic techniques,” Phys. Rev. A 12 (5), 1993–2008 (1975). doi 10.1103/Phys-RevA.12.1993ADSCrossRefGoogle Scholar
  30. 30.
    H. Oodate and T. Fujioka, “Measurements of 4.2 μm CO2 pressure broadening by using an HBr chemical laser,” J. Chem. Phys. 68 (12), 5494–5497 (1978). doi 10.1063/1.435676ADSCrossRefGoogle Scholar
  31. 31.
    W. G. Planet, G. L. Tettemer, and J. S. Knoll, “Temperature dependence of intensities and widths of N2-broadened lines in the 15 μm CO2 band from tunable laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 20 (6), 547–556 (1978). doi 10.1016/0022-4073(78)90025-0ADSCrossRefGoogle Scholar
  32. 32.
    C. B. Suarez and F. P. Valero, “Intensities, self-broadening, and broadening by Ar and N2 for the 3011II < 000 band of CO2 measured at different temperatures,” J. Mol. Spectrosc. 71 (1), 46–63 (1978). doi 10.1016/0022-2852(78)90074-7ADSCrossRefGoogle Scholar
  33. 33.
    F. P. Valero and C. B. Suarez, “Measurement at different temperatures of absolute intensities, line halfwidths, and broadening by Ar and N2 for the 3001II,” J. Quant. Spectrosc. Radiat. Transfer 19 (6), 579–590 (1978). doi 10.1016/0022-4073(78)90092-4ADSCrossRefGoogle Scholar
  34. 34.
    W. G. Planet and G. L. Tettemer, “Temperaturedependent intensities and widths of N2-broadened CO2 lines at 15 μm from tunable laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 22 (4), 345–354 (1979). doi 10.1016/0022-4073(79)90072-4ADSCrossRefGoogle Scholar
  35. 35.
    F. P. Valero, C. B. Suarez, and R. W. Boese, “Intensities and half-widths at different temperatures for the 201III<000 band of CO2 at 4854 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 22 (1), 93–99 (1979). doi 10.1016/0022-4073(79)90110-9ADSCrossRefGoogle Scholar
  36. 36.
    G. L. Tettemer and W. G. Planet, “Intensities and pressure-broadened widths of CO2 R-branch lines at 15 μm from tunable laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 24 (4), 343–345 (1980). doi 10.1016/0022-4073(80)90098-9ADSCrossRefGoogle Scholar
  37. 37.
    F. P. Valero, C. B. Suarez, and R. W. Boese, “Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201II < 000 band of 12C16O2 at 4978cm–1,” J. Quant. Spectrosc. Radiat. Transfer 23 (3), 337–341 (1980). doi 10.1016/0022-4073(80)90111-9ADSCrossRefGoogle Scholar
  38. 38.
    V. M. Devi, B. Fridovich, G. D. Jones, and D. G. S. Snyder, “Diode laser measurements of strengths, half-widths, and temperature dependence of half-widths for CO2 spectral lines near 4.2 μm,” J. Mol. Spectrosc. 105 (1), 61–69 (1984). doi 10.1016/0022-2852(84)90103-6ADSCrossRefGoogle Scholar
  39. 39.
    M. S. Abubakar and J. H. Shaw, “Carbon dioxide band intensities and linewidths in the 8–12-μm region,” Appl. Opt. 25, 1196–1203 (1986). doi 10.1364/AO.25.001196ADSCrossRefGoogle Scholar
  40. 40.
    C. Cousin, R. L. Doucen, J. P. Houdeau, C. Boulet, and A. Henry, “Air broadened linewidths, intensities, and spectral line shapes for CO2 at 4.3 μm in the region of the AMTS instrument,” Appl. Opt. 25, 2434–2439 (1986). doi 10.1364/AO.25.002434ADSCrossRefGoogle Scholar
  41. 41.
    B. Gentry and L. L. Strow, “Line mixing in a N2-broadened CO2 Q branch observed with a tunable diode laser,” J. Chem. Phys. 86, 5722 (1987). doi 10.1063/1.452770ADSCrossRefGoogle Scholar
  42. 42.
    L. A. Gross and P. R. Griffiths, “Pressure and temperature dependence of the self-broadened linewidths of the carbon dioxide laser bands,” Appl. Opt. 26 (11), 2250–2255 (1987).ADSCrossRefGoogle Scholar
  43. 43.
    J. W. C. Johns, “Absolute intensity and pressure broadening measurements of CO2 in the 4.3-μm region,” J. Mol. Spectrosc. 125 (2), 442–464 (1987). doi 10.1016/0022-2852(87)90109-3ADSCrossRefGoogle Scholar
  44. 44.
    V. Dana and A. Valentin, “Determination of line parameters from FTS spectra,” Appl. Opt. 27, 4450–4453 (1988).ADSCrossRefGoogle Scholar
  45. 45.
    T. Huet, N. Lacome, and A. Levy, “Linewidths and strengths in the Q branch of the 1000 < 0110 transition of CO2 near 14 μm,” J. Mol. Spectrosc. 128 (1), 206–215 (1988). doi 10.1016/0022-2852(88)90218-4ADSCrossRefGoogle Scholar
  46. 46.
    M. Margottin-Maclou, P. Dahoo, A. Henry, A. Valentin, and L. Henry, “Self-, N2-, and O2-broadening parameters in the ν3 and ν1 + ν3 bands of 12C16O2,” J. Mol. Spectrosc. 131 (1), 21–35 (1988). doi 10.1016/0022-2852(88)90102-6ADSCrossRefGoogle Scholar
  47. 47.
    L. Rosenmann, M. Y. Perrin, J.-M. Hartmann, and J. Taine, “Diode-laser measurements and calculations of CO2-line-broadening by H2O from 416 to 805K and by N2 from 296 to 803K,” J. Quant. Spectrosc. Radiat. Transfer 40 (5), 569–576 (1988). doi 10.1016/0022-4073(88)90137-9ADSCrossRefGoogle Scholar
  48. 48.
    L. Rosenmann, M. Y. Perrin, and J. Taine, “Collisional broadening of CO2 IR lines. I. Diode laser measurements for CO2–N2 mixtures in the 295–815K temperature range,” J. Chem. Phys. 88 (5), 2995 (1988). doi 10.1063/1.453940ADSCrossRefGoogle Scholar
  49. 49.
    V. Dana, A. Valentin, A. Hamdouni, and L. S. Rothman, “Line intensities and broadening parameters of the 11101 < 10002 band of 12C16O2,” Appl. Opt. 28, 2562–2566 (1989). doi 10.1364/AO.28.002562ADSCrossRefGoogle Scholar
  50. 50.
    C. B. Suarez and F. P. Valero, “Temperature dependence of self-broadened halfwidths of CO2,” J. Quant. Spectrosc. Radiat. Transfer 43 (4), 327–334 (1990). doi 10.1016/0022-4073(90)90022-XADSCrossRefGoogle Scholar
  51. 51.
    V. Dana, J.-Y. Mandin, G. Guelachvili, Q. Kou, M. Morillon-Chapey, R. B. Wattson, and L. S. Rothman, “Intensities and self-broadening coefficients of 12C16O2 lines in the laser band region,” J. Mol. Spectrosc. 152 (2), 328–341 (1992). doi 10.1016/0022-2852(92)90073-WADSCrossRefGoogle Scholar
  52. 52.
    V. M. Devi, D. C. Benner, C. P. Rinsland, and M. A. H. Smith, “Measurements of pressure broadening and pressure shifting by nitrogen in the 4.3-μm band of 12C16O2,” J. Quant. Spectrosc. Radiat. Transfer 48 (5), 581–589 (1992). doi 10.1016/0022-4073(92)90122-KADSCrossRefGoogle Scholar
  53. 53.
    J. Y. Mandin, V. Dana, M. Badaoui, A. Barbe, A. Hamdouni, and J. J. Plateaux, “Measurements of pressure-broadening and pressure-shifting coefficients from FT spectra,” J. Mol. Spectrosc. 164 (2), 328–337 (1994).ADSCrossRefGoogle Scholar
  54. 54.
    J. Y. Mandin, V. Dana, M. Y. Allout, L. Regalia, A. Barbe, and J. J. Plateaux, “Line intensities and selfbroadening coefficients in 10012–10001 band of 12C16O2 centered at 2224.657 cm–1,” J. Mol. Spectrosc. 170 (2), 604–607 (1995). doi 10.1006/jmsp.1995.1095ADSCrossRefGoogle Scholar
  55. 55.
    V. M. Devi, D. C. Benner, M. A. H. Smith, and C. P. Rinsland, “Air-and N2-broadening coefficients and pressure-shift coefficients in the 12C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transfer 59 (3), 137–149 (1998). doi 10.1016/S0022-4073(97)00113-1ADSCrossRefGoogle Scholar
  56. 56.
    C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution measurements of line intensity, broadening and shift of CO2 around 2 μm,” Eur. Phys. J., D 6, 327–332 (1999).ADSCrossRefGoogle Scholar
  57. 57.
    M. De Rosa, C. Corsi, M. Gabrysch, and F. D’Amato, “Collisional broadening and shift of lines in the 2v1 + 2v2 + v3 band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 61 (1), 97–104 (1999). doi 10.1016/S0022-4073(97)00207-0ADSCrossRefGoogle Scholar
  58. 58.
    C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution investigation of the weak ν1 + 3–+ ν3 band of CO2 around 2 μm,” Appl. Phys., B 70 (2), 879–881 (2000). doi 10.1007/s003400000232ADSCrossRefGoogle Scholar
  59. 59.
    J. Henningsen and H. Simonsen, “(2201–0000) band of CO2 at 6348 cm–1: Line strengths, broadening parameters, and pressure shifts,” J. Mol. Spectrosc. 203 (1), 16–27 (2000). doi 10.1006/jmsp.2000.8157ADSCrossRefGoogle Scholar
  60. 60.
    A. Predoi-Cross, C. Luo, R. Berman, J. R. Drummond, and A. D. May, Line strengths, self-broadening, and line mixing in the 2001,” J. Chem. Phys. 112 (19), 8367–8377 (2000). doi 10.1063/1.481480ADSCrossRefGoogle Scholar
  61. 61.
    V. M. Devi, D. C. Benner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transfer 76 (3-4), 411–434 (2003). doi 10.1016/S0022-4073(02)00068-7ADSCrossRefGoogle Scholar
  62. 62.
    I. Pouchet, V. Zeninari, B. Parvitte, and G. Durry, “Diode laser spectroscopy of CO2 in the 1.6 μm region for the in situ sensing of the middle atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 83 (3-4), 619–628 (2004). doi 10.1016/S0022-4073(03)00108-0ADSCrossRefGoogle Scholar
  63. 63.
    V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, “In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm: A spectroscopic study,” Infrared Phys. Technol. 45, 229–237 (2004). doi 10.1016/j.infrared. 2003.11.004ADSCrossRefGoogle Scholar
  64. 64.
    R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Self-broadened widths and shifts of 12C16O2: 4750–7000 cm–1,” J. Mol. Spectrosc. 239 (2), 243–271 (2006). doi 10.1016/j.jms.2006.08.003 1 ν2 1 ν2ADSCrossRefGoogle Scholar
  65. 65.
    J. S. Li, K. Liu, W. J. Zhang, W. D. Chen, and X. M. Gao, “Pressure-induced line broadening for the (30012)–(00001) band of CO2 measured with tunable diode laser photoacoustic spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 109 (9), 1575–1585 (2008). doi 10.1016/j.jqsrt.2007.10.014ADSCrossRefGoogle Scholar
  66. 66.
    J. S. Li, K. Liu, W. J. Zhang, W. D. Chen, and X. M. Gao, “Self-, N2-and O2-broadening coefficients for the 12C16O2 transitions near-IR measured by a diode laser photoacoustic spectrometer,” J. Mol. Spectrosc. 252 (1), 9–16 (2008). doi 10.1016/j.jms.2008.03.018ADSCrossRefGoogle Scholar
  67. 67.
    R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Spectroscopic database of CO2 line parameters: 4300–7000 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 109 (6), 906–921 (2008). doi 10.1016/j.jqsrt.2007.12.004ADSCrossRefGoogle Scholar
  68. 68.
    O. S. Gulidova, R. E. Asfin, I. M. Grigoriev, and N. N. Filippov, “Air pressure broadening and shifting of high-J lines of (00011),” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2315–2320 (2010). doi 10.1016/j.jqsrt.2010.04.027ADSCrossRefGoogle Scholar
  69. 69.
    K. I. Arshinov, A. S. Dudarenok, N. N. Lavrentieva, and V. V. Nevdakh, “Collisional broadening of CO2 1000–0001 transition absorption lines by N2O molecules,” J. Appl. Spectrosc. 78 (5), 646–649 (2011). doi 10.1007/s10812-011-9512-zADSCrossRefGoogle Scholar
  70. 70.
    N. H. Ngo, X. Landsheere, E. Pangui, S. B. Morales, and J.-M. Hartmann, “Self-broadening of 16O12C16O ν3-band lines,” J. Mol. Spectrosc. 306, 33–36 (2014). doi 10.1016/j.jms.2014.10.005ADSCrossRefGoogle Scholar
  71. 71.
    T. M. Petrova, A. M. Solodov, A. A. Solodov, O. M. Lyulin, Yu. G. Borkov, S. A. Tashkun, and V. I. Perevalov, “Measurements of CO2 line parameters in the 9250–9500 cm–1 and 10.700–10.860 cm–1 regions,” J. Quant. Spectrosc. Radiat. Transfer 164, 109–116 (2015). doi 10.1016/j.jqsrt.2015.06.001ADSCrossRefGoogle Scholar
  72. 72.
    A. Predoi-Cross, W. Liu, R. Murphy, C. Povey, R. R. Gamache, A. L. Laraia, A. R. W. McKellar, D. R. Hurtmans, and V. M. Devi, “Measurement and computations for temperature dependences of selfbroadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands,” J. Quant. Spectrosc. Radiat. Transfer 111 (9), 1065–1079 (2010). doi 10.1016/j.jqsrt.2010.01.003ADSCrossRefGoogle Scholar
  73. 73.
    F. Thibault J. Boissoles, R. Le Doucen, J. P. Bouanich, Ph. Arcas, and C. Boulet, “Pressure induced shifts of of CO2 lines: measurements in the 0003–0000 band and theoretical analysis,” J. Chem. Phys. 96 (7), 4945–4953 (1992). doi 10.1063/1.462737ADSCrossRefGoogle Scholar
  74. 74.
    L. Ozanne, J.-P. Bouanich, R. Rodrigues, J.-M. Hartmann, G. Blanquet, and J. Walrand, “Diode-laser measurements of He-and N2-broadening coefficients and line-mixing effects in the Q-branch of the v1–v2 band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 59 (3), 337–344 (1998). doi 10.1016/S0022-4073(97)00133-7ADSCrossRefGoogle Scholar
  75. 75.
    V. M. Devi, D. C. Benner, M. A. H. Smith, and C. P. Rinsland, “Nitrogen broadening and shift coefficients in the 4.2–4.5-μm bands of CO2,” J. Mol. Spectrosc. 76, 289–307 (2003). doi 10.1016/S0022-4073(02)00057-2Google Scholar
  76. 76.
    S. Nakamichi, Y. Kawaguchi, H. Fukuda, S. Enami, S. Hashimoto, M. Kawasaki, T. Umekawa, I. Morino, H. Suto, and G. Inoue, “Buffer-gas pressure broadening for the (3001)III–(0 0 0) band of CO2 measured with continuous-wave cavity ring-down spectroscopy,” Phys. Chem. Chem. Phys. 8, 364–368 (2006). doi 10.1039/b511772kCrossRefGoogle Scholar
  77. 77.
    L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: A comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101 (2), 325–338 (2006). doi 10.1016/j.jqsrt.2005.11.021ADSCrossRefGoogle Scholar
  78. 78.
    T. Tanaka, M. Fukabori, T. Sugita, H. Nakajima, T. Yokota, T. Watanabe, and Y. Sasano, “Spectral line parameters for CO2 bands in the 4.8-to 5.3-μm region,” J. Mol. Spectrosc. 239 (1), 1–10 (2006). doi 10.1016/j.jms.2006.05.013ADSCrossRefGoogle Scholar
  79. 79.
    A. Predoi-Cross, A. V. Unni, W. Liu, I. Schofield, C. Holladay, A. R. W. McKellar, and D. Hurtmans, “Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012 < 00001 and 30013 < 00001 bands, line mixing, and speed dependence,” J. Mol. Spectrosc. 245 (1), 34–51 (2007). doi 10.1016/j.jms.2007.07.004ADSCrossRefGoogle Scholar
  80. 80.
    R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of 12C16O2 bands: 4750–7000 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 246 (2), 133–157 (2007). doi 10.1016/j.jms.2007.09.005Google Scholar
  81. 81.
    A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm,” Appl. Phys., B 90 (3), 619–628 (2008). doi 10.1007/s00340-007-2925-yADSCrossRefGoogle Scholar
  82. 82.
    L. Joly, F. Gibert, B. Grouiez, A. Grossel, B. Parvitte, G. Durry, and V. Zeninari, “A complete study of CO2 line parameters around 4845 cm–1 for lidar applications,” J. Quant. Spectrosc. Radiat. Transfer 109 (3), 426–434 (2008). doi 10.1016/j.jqsrt.2007.06.003ADSCrossRefGoogle Scholar
  83. 83.
    D. C. Benner, C. E. Miller, and V. M. Devi, “Constrained multispectrum analysis of CO2–Ar broadening at 6227 and 6348 cm–1,” Can. J. Phys. 87 (5), 499–515 (2009). doi 10.1139/P09-014ADSCrossRefGoogle Scholar
  84. 84.
    G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the nearinfrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130 (18), 184306 (2009). doi 10.1063/1.3125965ADSCrossRefGoogle Scholar
  85. 85.
    T. Cai, G. Gao, X. Gao, W. Chen, and G. Liu, “Diode laser measurement of line strengths and air-broadening coefficients of CO2 and CO in the 1.57 μm region for combustion diagnostics,” Mol. Phys. 108 (5), 539–545 (2010). doi 10.1080/00268970903547934ADSCrossRefGoogle Scholar
  86. 86.
    V. M. Devi, D. C. Benner, C. E. Miller, and A. Predoi-Cross, “Lorentz half-width, pressure-induced shift and speed-dependent coefficients in oxygen-broadened CO2 bands at 6227 and 6348 cm–1 using a constrained multispectrum analysis,” J. Quant. Spectrosc. Radiat. Transfer 111 (16), 2355–2369 (2010). doi 10.1016/j.jqsrt.2010.06.003ADSCrossRefGoogle Scholar
  87. 87.
    J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, P. H. Flamant, F. Gibert, and V. Zeninari, “Tunable diode laser measurement of pressure-induced shift coefficients of CO2 around 2.05 μm for lidar application,” J. Quant. Spectrosc. Radiat. Transfer 112 (9), 1411–1419 (2011). doi 10.1016/j.jqsrt.2011.01.030ADSCrossRefGoogle Scholar
  88. 88.
    Q. Deliere, L. Fissiaux, and M. Lepere, “Absolute line intensities and self-broadening coefficients in the ν3–ν1 band of carbon dioxide,” J. Mol. Spectrosc. 272 (1), 36–42 (2012). doi 10.1016/j.jms.2012.01.002ADSCrossRefGoogle Scholar
  89. 89.
    J. Lamouroux, R. R. Gamache, A. L. Laraia, J.-M. Hartmann, and C. Boulet, “Semiclassical calculations of half-widths and line shifts for transitions in the 30012 ← 00001 and 30013 ← 00001 bands of CO2. III: Self collisions,” J. Quant. Spectrosc. Radiat. Transfer 113 (12), 1536–1546 (2012). doi 10.1016/j.jqsrt.2012.03.035ADSCrossRefGoogle Scholar
  90. 90.
    R. R. Gamache, J. Lamouroux, A. L. Laraia, J.-M. Hartmann, and C. Boulet, “Semiclassical calculations of half-widths and line shifts for transitions in the 30012 ← 00001 and 30013 ← 00001 bands of CO2, I: Collisions with N2,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 976–990 (2012). doi 10.1016/j.jqsrt.2012.02.014ADSCrossRefGoogle Scholar
  91. 91.
    J. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-induced pressure shift and temperature dependence measurements of CO2 at 2.05 μm with a tunable diode laser spectrometer,” Spectrochimic. Acta, Part A 85 (1), 74–78 (2012). doi 10.1016/j.saa.2011.09.016ADSCrossRefGoogle Scholar
  92. 92.
    R. Hashemi, H. Rozario, A. Ibrahim, and A. Predoi-Cross, “Line shape study of the carbon dioxide laser band I,” Can. J. Phys. 20 (2013). doi 10.1139/cjp-2013-0051Google Scholar
  93. 93.
    Y. Lu, A.-W. Liu, X.-F. Li, J. Wang, C.-F. Cheng, Y. R. Sun, R. Lambo, and S.-M. Hu, “Line parameters of the 782 nm band of CO2,” Astrophys. J. 775 (1), 71 (2013). doi 10.1088/0004-637X/775/1/71ADSCrossRefGoogle Scholar
  94. 94.
    A. Predoi-Cross, W. Liu, C. Holladay, A. V. Unni, I. Schofield, A. R. W. McKellar, and D. Hurtmans, “Line profile study of transitions in the 30012 ← 00001 and 30013 ← 00001 bands of carbon dioxide perturbed by air,” J. Quant. Spectrosc. Radiat. Transfer 246 (1), 98–112 (2007). doi 10.1016/j.jms.2007.08.008Google Scholar
  95. 95.
    A. Predoi-Cross, W. Liu, R. Murphy, C. Povey, R. R. Gamache, A. L. Laraia, A. R. W. McKellar, D. R. Hurtmans, and V. M. Devi, “Measurement and computations for temperature dependences of selfbroadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands,” J. Quant. Spectrosc. Radiat. Transfer 111 (9), 1065–1079 (2010). doi 10.1016/j.jqsrt.2010.01.003ADSCrossRefGoogle Scholar
  96. 96.
    Q. Delière, L. Fissiaux, and M. Lepère, “Absolute line intensities and self-broadening coefficients in the ν3–ν1 band of carbon dioxide,” J. Mol. Spectrosc. 272 (1), 36–42 (2012). doi 10.1016/j.jms.2012.01.002ADSCrossRefGoogle Scholar
  97. 97.
    L. Daneshvar, T. Foldes, J. Buldyreva, and Auwera J. Vander, “Infrared absorption by pure CO2 near 3340 cm−1: Measurements and analysis of collisional coefficients and line-mixing effects at subatmospheric pressures,” J. Quant. Spectrosc. Radiat. Transfer 149, 258–274 (2014). doi 10.1016/j.jqsrt.2014.08.007ADSCrossRefGoogle Scholar
  98. 98.
    V. M. Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348 cm–1: Positions, intensities, and airand self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242 (2), 90–117 (2007). doi 10.1016/j.jms.2007.02.018ADSCrossRefGoogle Scholar
  99. 99.
    V. M. Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6227.9 cm–1: Constrained multispectrum analysis of intensities and line shapes in the 30013 ← 00001 band,” J. Mol. Spectrosc. 245 (1), 52–80 (2007). doi 10.1016/j.jms.2007.05.015ADSCrossRefGoogle Scholar
  100. 100.
    A. Predoi-Cross, A. V. Unni, W. Liu, I. Schofield, C. Holladay, A. R. W. McKellar, and D. Hurtmans, “Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands, line mixing, and speed dependence,” J. Mol. Spectrosc. 245 (1), 34–51 (2007). doi 10.1016/j.jms.2007.07.004ADSCrossRefGoogle Scholar
  101. 101.
    T. Hikida and K. M. T. Yamada, “N2-and O2-broadening of CO2 for the (3001)III ← (0000) band at 6231 cm−1,” J. Mol. Spectrosc. 239 (2), 154–159 (2006). doi 10.1016/j.jms.2006.07.001ADSCrossRefGoogle Scholar
  102. 102.
    R. Berman, P. Duggan, P. M. Sinclair, A. D. May, and J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ ν2Q branch of CO2,” J. Mol. Spectrosc. 182 (2), 350–363 (1997). doi 10.1006/jmsp.1996.7226ADSCrossRefGoogle Scholar
  103. 103.
    G. Larcher, X. Landsheere, M. Schwell, and H. Tran, “Spectral shape parameters of pure CO2 transitions near 1.6 μm by tunable diode laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 164, 82–88 (2015). doi 10.1016/j.jqsrt.2015.05.013ADSCrossRefGoogle Scholar
  104. 104.
    V. M. Devi, D. C. Benner, C. E. Miller, and A. Predoi-Cross, “Lorentz half-width, pressure-induced shift and speed-dependent coefficients in oxygen-broadened CO2 bands at 6227 and 6348 cm–1 using a constrained multispectrum analysis,” J. Quant. Spectrosc. Radiat. Transfer 111 (16), 2355–2369 (2010). doi 10.1016/j.jqsrt.2010.06.003ADSCrossRefGoogle Scholar
  105. 105.
    A. Predoi-Cross, C. Luo, R. Berman, J. R. Drummond, and A. D. May, “Line strengths, self-broadening, and line mixing in the 2001,” J. Chem. Phys. 112 (19), 8367–8377 (2000). doi 10.1063/1.481480ADSCrossRefGoogle Scholar
  106. 106.
    http://www.elbib.ru/index.phtml?page=elbib/rus/journal/2013/part4/AKLPF.Google Scholar
  107. 107.
    http://wadis.saga.iao.ru/co2/ontology/.Google Scholar
  108. 108.
    http://wadis. saga.iao.ru/co2/ontology/band/.Google Scholar
  109. 109.
    http://elbib.ru /index.phtml?page=elbib /rus/journal/2012 /part3/AKLPF.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Kozodoev
    • 1
  • A. I. Privezentsev
    • 1
  • A. Z. Fazliev
    • 1
  • N. N. Filippov
    • 2
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.St. Petersburg State UniversityPeterhof, St. PetersburgRussia

Personalised recommendations