Atmospheric and Oceanic Optics

, Volume 30, Issue 5, pp 475–480 | Cite as

Laser spectroscopy methods in the development of laser sensor elements for underwater robotics

  • O. A. Bukin
  • A. Yu. Mayor
  • D. Yu. Proschenko
  • I. O. Bukin
  • V. V. Bolotov
  • A. A. Chekhlenok
  • S. A. Mun
Optical Instrumentation
  • 29 Downloads

Abstract

Laser technologies that are used for the development of sensor elements for Remotely Operated Vehicles (ROVs) are presented, as well as the latest developments in underwater robotics where laser spectroscopy methods are applied to environmental monitoring. A submersible laser spectrometer unit intended for studying Raman scattering and laser-induced fluorescence (LIF) spectra is presented. The spectrometer was developed as an element of an ROV sensor system for remote detection and measurements of organic matter concentrations in sea water and underwater objects. The results of environmental tests of the submersible LIF spectrometer in various marine areas, including the Arctic, are described.

Keywords

laser spectroscopy laser sensing laser induced fluorescence laser induced breakdown spectroscopy chlorophyll A fluorometer ROV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” Proc. ACRA, 1–8 (2004).Google Scholar
  2. 2.
    N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, “An integrated, underwater optical/acoustic communications system,” in Proc. of IEEE Conf. “Oceans 2010”, May 24-27, 2010, Sydney (IEEE, 2010), pp. 1–6.Google Scholar
  3. 3.
    http://seatronics-group.com/equipment-rental/divingndt/subsea-cameras/tritech-typhoon-vms/Google Scholar
  4. 4.
    http://www.2grobotics.com/products/underwater-laserscanneruls-100/Google Scholar
  5. 5.
    http://www.ambalux.com/gdresources/media/AMB_1013_Brochure.pdfGoogle Scholar
  6. 6.
    www.sonardyne.com/product/blue-comm-underwateroptical-communication-system/Google Scholar
  7. 7.
    O. A. Bukin, D. V. Proshchenko, I. O. Bukin, D. V. Burov, and V. T. Matetskii, Pat. Appl. No. 2015155813 (086110) (December 24, 2015).Google Scholar
  8. 8.
    O. A. Bukin, A. V. Alekseev, A. A. Il’in, S. S. Golik, V. I. Tsarev, and N. S. Bodin, “Application of laser induced breakdown spectroscopy with multipulse plasma generation to monitoring seawater quality and the state of phytoplankton,” Atmos. Ocean. Opt. 16 (1), 20–26 (2003).Google Scholar
  9. 9.
    O. A. Bukin, A. N. Pavlov, P. A. Salyuk, S. S. Golik, A. A. Il’in and A. Yu. Bubnovskii, “Laser technologies of the ocean research,” Opt. Atmos. Okeana. 23 (10), 926–934 (2010).Google Scholar
  10. 10.
    D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), Part II: Review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66 (4), 347–419 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    S. Maurice, R. C. Wiens, M. Saccoccio, B. Barraclough, O. Gasnault, O. Forni, and J. Bernardin, “The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Science objectives and mast unit description,” Space Sci. Rev. 170 (1–4), 95–166 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    P. Y. Meslin, O. Gasnault, O. Forni, S. Schröder, and S. Le Mouélic, “Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars,” Science 341 (6153), 1238670 (2013).CrossRefGoogle Scholar
  13. 13.
    O. A. Bukin, A. N. Pavlov, N. V. Sushilov, and S. L. Eduardov, “Use of laser spark spectroscopy for analysis of the elemental composition of aqueous media,” J. Appl. Spectrosc. 52 (5), 482–484 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    C. Goueguel, J. P. Singh, D. L. McIntyre, J. Jain, and A. K. Karamalidis, “Effect of sodium chloride concentration on elemental analysis of brines by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68 (2), 213–221 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    C. Goueguel, D. L. McIntyre, J. P. Singh, J. Jain, and A. K. Karamalidis, “Laser-induced breakdown spectroscopy (LIBS) of a high-pressure CO2–water mixture: Application to carbon sequestration,” Appl. Spectrosc. 68 (9), 997–1003 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    S. S. Golik, O. A. Bukin, A. A. Il’in, E. B. Sokolova, Yu. N. Kul’chin, and A. A. Gal’chenko, “Determination of detection limits for elements in water by femtosecond laser-induced breakdown spectroscopy,” J. Appl. Spectrosc. 79 (3), 471–476 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Il’in, O. A. Bukin, E. B. Sokolova, and S. S. Golik, “Comparison of element detection limits in femtosecond laser-induced breakdown spectroscopy,” Opt. Atmos. Okeana. 25 (5), 438–440 (2012).Google Scholar
  18. 18.
    B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, T. Nozaki, T. Ohki, and K. Ohki, “Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis,” Deep Sea Res. Part I 95, 20–36 (2015).CrossRefGoogle Scholar
  19. 19.
    F. Gereit, P. Hauptmann, G. Matz, V. Mellert, and R. Reuter, “An ROV-based sensor system for maritime pollution control,” in Proc. Oceanol. Int. 1998, Vol. 2, pp. 55–68.Google Scholar
  20. 20.
    P. G. Brewer, G. Malby, J. Pasteris, S. White, E. Peltzer, B. Wopenk, and M. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. 51, 739–753 (2004).CrossRefGoogle Scholar
  21. 21.
    A. D. Sherman, P. M. Walz, and P. G. Brewer, “Sea technology two generation of deep-ocean Raman in situ spectrometers,” Sea Technol., No. 2, 10–13 (2007).Google Scholar
  22. 22.
    E. N. Baulo, I. O. Bukin, I. M. Doroshenko, A. Yu. Mayor, and P. A. Salyuk, “Remotely controllable complex for study of biooptical parameters of the see,” Opt. Atmos. Okeana 27 (3), 262–265 (2014).CrossRefGoogle Scholar
  23. 23.
    P. A. Salyuk, V. A. Bulanov, I. V. Korskov, A. V. Bulanov, A. Yu. Mayor, A. Yu. Bubnovskiy, O. A. Bukin, and D. G. Lyakhov, “UUV optical spectroscopy methods for underwater methane detection,” Podvodnye Issled. Robototekhn. 2 (12), 43–51 (2011).Google Scholar
  24. 24.
    E. N. Baulo, I. O. Bukin, A. Yu. Mayor, and P. A. Salyuk, “Development of laser technologies for expansion of capabilities of research underwater devices operating in Arctic conditions,” Morskie Intellektual’nye Tekhnol., No. 1-1, 38–41 (2013).Google Scholar
  25. 25.
    Yu. V. Fedotov, O. A. Matrosova, M. L. Belov, and V. A. Gorodnichev, “Experimental studies of fluorescence spectra of natural formations and oil pollutions,” Nauka Obrazovanie: Nauchnoe Izdanie MGTU im. N.E. Baumana, No 11, 1–13 (2011).Google Scholar
  26. 26.
    O. A. Bukin, P. A. Salyuk, A. Yu. Mayor, and A. N. Pavlov, “Studies of organic matter reproduction in phytoplankton cells by laser-induced fluorescence method,” Atmos. Ocean. Opt. 18 (11), 879–885 (2005).Google Scholar
  27. 27.
    P.A. Salyuk, Candidate’s Dissertation in Mathematics and Physics (Vladivostok, 2005).Google Scholar
  28. 28.
    M. Ardyna, M. Babin, M. Gosselin, E. Devred, L. Rainville, and J.-E. Tremblay, “Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms,” Geophys. Rev. Lett. 41 (17), 6207–6212 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. A. Bukin
    • 1
  • A. Yu. Mayor
    • 2
  • D. Yu. Proschenko
    • 1
  • I. O. Bukin
    • 1
  • V. V. Bolotov
    • 1
  • A. A. Chekhlenok
    • 1
  • S. A. Mun
    • 1
  1. 1.Maritime State UniversityVladivostokRussia
  2. 2.Institute of Automation and Control Processes, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations