Atmospheric and Oceanic Optics

, Volume 29, Issue 5, pp 415–421 | Cite as

Superstatistics of optical beam scintillations over thermally nonequilibrium paths

  • T. I. Arsenyan
  • O. M. Vokhnik
  • A. M. Zotov
  • A. G. Komarov
  • A. V. Nesterov
  • N. A. Suhareva
Optics of Stochastically-Heterogeneous Media
  • 15 Downloads

Abstract

Methods are presented for the analysis of sounding optical beam intensity variations at the exit of a nonstationary nonequilibrium path with the use of the superstatistics and nonextensive statistical mechanics. The connections of the first and the second moments of the experimentally recorded distribution functions of the intensity scintillations inside the subapertures of the output beam profile were applied to derive the models for nonequilibrium flows as well as the hypotheses about the distributions of the temperature and aerodynamic flow phase states over the path.

Keywords

open optical channel Tsallis statistics turbulence superstatistics scintillation index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Beck and E. G. D. Cohen, “Superstatistics,” Phys. A (Amsterdam, Neth.) 322 (1–4), 267–275 (2003).ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    C. Beck, E. G. D. Cohen, and H. L. Swinney, “From time series to superstatistics,” Phys. Rev. E 72 (7), 056133 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    G. C. Yalcin and C. Beck, “Environmental superstatistics,” Phys. A (Amsterdam, Neth.) 392, (21), 5431–5452 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Nelson and B. F. Rafael, “Superstatistics and the quest of generalized ensembles equivalence in a system with long-range interactions,” Phys. A (Amsterdam, Neth.) 446, 195–203 (2016).MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Abe, C. Beck, and E. G. D. Cohen, “Superstatistics, thermodynamics, and fluctuations,” Phys. Rev., E 76 16, 031102 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    A. G. Bashkirov, “Renyi entropy as a statistical entropy for complex systems,” Theor. Math. Phys. 149 2, 1559–1573 (2006).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics,” J. Stat. Phys. 52 1–2, 479–487 (1988).ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    C. Tsallis, P. W. Lambert, and D. Prato, “A non extensive critical phenomenon scenario for quantum entanglement,” Phys. A (Amsterdam, Neth.) 295 1–2, 158–171 (2001).ADSCrossRefMATHGoogle Scholar
  9. 9.
    A. G. Bashkirov, Self-organization and the Second Law of Thermodynamics (Institute of Geosphere Dynamics Ras, Chelyabinsk, 2007) [in Russian].Google Scholar
  10. 10.
    C. Beck, E. G. D. Cohen, and S. Rizzo, “Atmospheric turbulence and superstatistics,” Europhys. News 36 6, 189–191 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    C. Beck, “Superstatistics in hydrodynamic turbulence,” Phys. D (Amsterdam, Neth.) 193 1, 195–207 (2004).ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    C. Beck, “Dynamical foundations of nonextensive statistical mechanics,” Phys. Rev. Lett. 87 7, 180601 (2001).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    C. Beck, G. S. Lewis, and H. L. Swinney, “Measuring nonextensitivity parameters in a turbulent Couette–Taylor flow,” Phys. Rev., E 63 15, 035303 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    A. K. Aringazin and M. I. Mazhitov, Gaussian factor in the distribution arising from the nonextensive statistics approach to fully developed turbulence. http://arxiv.org/pdf/cond-mat/0301040.Google Scholar
  15. 15.
    P. Rabassa and C. Beck, Extreme value laws for superstatistics. http://arxiv.org/abs/1409.2415v2.Google Scholar
  16. 16.
    T. I. Arsenyan, N. A. Sukhareva, A. P. Sukhorukov, and A. A. Chugunov, “Scintillation index of the Gaussian beams propagated through the paths with strong turbulence,” Moscow Univ. Phys. Bul. 69 4, 308–317 (2014).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. V. Getling, Rayleigh–Benard Convection: Structure and Dynamics (World Scientific Publishing Co., Singapore, 1996).MATHGoogle Scholar
  18. 18.
    T. I. Arsenyan, N. A. Sukhareva, and A. P. Sukhorukov, “Turbulence-induced laser-beam distortions in phase space,” Moscow Univ. Phys. Bul. 69 1, 55–60 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    Integrated development environment (IDE) for R. http://www.rstudio.com/.Google Scholar
  20. 20.
    Graphical and statistical analyses of environmental data. https://cran.r-project.org/web/packages/EnvStats/index.html/Google Scholar
  21. 21.
    S. P. Millard, EnvStats: An R Package for Environmental Statistics (Springer, New York, 2013).CrossRefMATHGoogle Scholar
  22. 22.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (John Wiley & Sons, New York, 1975), Vol. 2.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. I. Arsenyan
    • 1
  • O. M. Vokhnik
    • 1
  • A. M. Zotov
    • 1
  • A. G. Komarov
    • 2
  • A. V. Nesterov
    • 2
  • N. A. Suhareva
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Mosсow Radiocommunications Research InstituteMoscowRussia

Personalised recommendations