Atmospheric and Oceanic Optics

, Volume 29, Issue 4, pp 390–394 | Cite as

Lasing in mixtures of rare gases with fluorine pumped by volume diffuse discharges

  • A. N. PanchenkoEmail author
  • N. A. Panchenko
Optical Sources and Receivers for Environmental Studies


Laser parameters in He–Ar(Kr, Xe)–F2 and He–F2 gas mixtures under pumping by runawayelectron preionized diffuse discharge (REP DD) are studied. It is shown that a REP DD is an efficient XeF* and KrF* laser emission source. Lasing on transitions of molecular fluorine in the VUV region (at 157 nm) was obtained for the first time. It is shown that high homogeneity of REP DD allows an increase in the pulse length in rare gas fluorine lasers. Lasing parameters under the REP DD pumping are comparable with those obtained under pumping by commonly used transverse discharges with preionization.


rare gas fluorine lasers diffuse volume discharge efficient lasing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. S. Heaps and J. Burris, “Airborne Raman lidar,” Appl. Opt. 35 (36), 7128–7135 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Experimental estimation of Raman lidar sensitivity in the middle,” Atmos. Ocean. Opt. 26 (4), 320–325 (2013).CrossRefGoogle Scholar
  3. 3.
    V. D. Burlakov, S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, and O. V. Kharchenko, “Lindar sounding of ozone in the upper troposphere–lower stratosphere: Measurement technique and results,” Izv. Tom. Politekhn. Univ., Inzhiniring Georesursov 326 (9), 124–132 (2015).Google Scholar
  4. 4.
    Sh. Sh. Nabiev, “Modern trends in the development of remote detection methods for radioactive and highly toxic matters,” Vestn. Ross. Akad. Estestv. Nauk, No. 1, 14–25 (2012).Google Scholar
  5. 5.
    S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, Yu. N. Panchenko, and G. V. Sakovich, “Lidar detection the vapor of explosives in the atmosphere,” Russ. Phys. J. 58 (9), 14–21 (2015).Google Scholar
  6. 6.
    M. J. Kuscner, “Microarcs as a termination mechanism of optical pulses in electric-discharge-excited KrF excimer laser,” IEEE Trans. Plasma Sci. 19 (2), 387–399 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    D. Mathew, H. M. J. Bastiaens, K. J. Boller, and P. J. M. Peters, “Current filamentation in dischargeexcited F2-based excimer laser gas mixtures,” Appl. Phys. Lett. 88 (10), 101502 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    P. O. Vil’tovskii, M. I. Lomaev, A. N. Panchenko, N. A. Panchenko, D. V. Rybka, and V. F. Tarasenko, “Lasing in the UV, IR and visible spectral ranges in a runaway-electron-preionised diffuse discharge,” Quantum Electron. 43 (7), 605–609 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    M. I. Lomaev, A. N. Panchenko, and N. A. Panchenko, “Spectral parameters of nonchain volume-discharge HF(DF) laser radiation,” Atmos. Oceanic Opt. 27 (4), 339–343 (2014).CrossRefGoogle Scholar
  10. 10.
    G. A. Mesyats, S. D. Korovin, V. V. Rostov, V. G. Shpak, and M. I. Yalandin, “The RADAN series of compact pulsed power generators and their applications,” Proc. IEEE 92 (7), 1166–1179 (2004).CrossRefGoogle Scholar
  11. 11.
    H. Kumagai and M. Obara, “Output energy enhancement of discharge-pumped XeF(B→X) lasers with the two-component halogen donor mixtures,” IEEE J. Quantum Electron. 25 (8), 1874–1878 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    A. Mandl, R. Slater, and H. C. Appel, “Selective removal of F2 impurity from NF3/Xe/Ne, XeF laser mixtures,” Rev. Sci. Instrum. 53 (3), 301–305 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    J. G. Eden and R. W. Waynant, “Collisional deactivation studies of the XeF* (B) State by He, Xe, NF3, and F2,” J. Chem. Phys. 68 (6), 2850–2854 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    E. D. Onkels and W. Seelig, “Real time measurement of current and voltage in discharge pumped KrF* excimer lasers,” Rev. Sci. Instrum. 68 (8), 3250–3251 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    V. M. Borisov, I. E. Bragin, A. Yu. Vinokhodov, and V. A. Vodchits, “Pumping rate of electric-discharge excimer lasers,” Quantum Electron. 25 (6), 507–510 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    Physical Encyclopedia, Ed. by A.M. Prokhorov (Bol’shaya Rossiiskaya entsiklopediya, Moscow, 1998), vol. 5 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations