Atmospheric and Oceanic Optics

, Volume 29, Issue 2, pp 127–134 | Cite as

Generation of aerosol and droplets in binary mixtures of saturated water vapor with air and molecular gases

  • A. V. Klimkin
  • A. N. Kuryak
  • Yu. N. Ponomarev
  • A. S. Kozlov
  • S. B. Malyshkin
  • A. K. Petrov
  • A. L. Kupershtokh
  • D. I. Karpov
  • D. A. Medvedev
Optics of Clusters, Aerosols, and Hydrosoles

Abstract

Results of observation of the generation of aerosol particles and droplets in mixtures of saturated water vapor with air and molecular gases are described. The kinetics of generation of aerosol and droplets was studied in the absence of a monokinetic electron beam and under its influence on a gas mixed with supersaturated water vapor formed in the process of a controllable pressure discharge from a spherical chamber of 1.4 m diameter with the gas mixture into a vacuum reservoir ~40 m3 in volume. The generation kinetics was recorded by the low-angle laser beam scattering method (for droplets) and with an aerosol spectrometer (for particles). Experimental results show a significant dependence of droplet and particle generation on the ionizing radiation effect. The 3D computer simulation of the process of super-saturated water vapor condensation on ions by the lattice Boltzmann method (LBM) and molecular dynamics (MD) describes qualitatively the experimental results.

Keywords

atmosphere clouds molecules aerosol drop phase transition ionizing radiation computer modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Ney, “Cosmic radiation and the weather,” Nature (Gr. Brit.) 183, 451–452 (1959).ADSCrossRefGoogle Scholar
  2. 2.
    N. Marsh and H. Svensmark, “Cosmic rays, clouds and climate,” Space Sci. Rev. 94 (1–2), 215–230 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    M. Andreas, B. Enghoff, and H. Svensmark, “The role of atmospheric ions in aerosol nucleation: A review,” Atmos. Chem. Phys. 8 (16), 4911–4923 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    G. F. Krymskii, “Cosmic rays and the weather,” Nauka Tekh. Yakutii, No. 1 (8), 3–6 (2005).Google Scholar
  5. 5.
    D. J. Wilson, Wilson Chamber (Izd. Inostr. Liter., Moscow, 1954) [in Russian].Google Scholar
  6. 6.
    A. E. Nielsen, Kinetics of Precipitation (Pergamon, Oxford, 1964).Google Scholar
  7. 7.
    G. F. Krymskii, V. V. Kolosov, A. P. Rostov, and I. S. Tyryshkin, “Experimental setup for investigating the water vapor nucleation in an artificial atmosphere,” Opt. Atmos. Okeana 23 (9), 820–825 (2010).Google Scholar
  8. 8.
    G. F. Krymskii, V. V. Kolosov, and I. S. Tyryshkin, “Vapor condensation under the ionizing effect,” Opt. Atmos. Okeana 23 (9), 826–829 (2010).Google Scholar
  9. 9.
    Yu. N. Ponomarev, A. V. Klimkin, A. S. Kozlov, V. V. Kolosov, G. F. Krymskii, A. N. Kuryak, S. B. Malyshkin, and A. K. Petrov, “Study of condensation of supersaturate water vapor under ionization of the atmosphere and accompanying characteristic IR radiation,” Solnechno-Zemnaya Fiz., No. 21, 58–61 (2012).Google Scholar
  10. 10.
    V. F. Tarasenko, S. I. Yakovlenko, V. M. Orlovskii, A. N. Tkachev, and S. A. Shunailov, “Production of powerful electron beams in dense gases,” J. Experim. Theor. Phys. Lett. 77 (11), 611–615 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    N. N. Das Gupta and S. K. Ghosh, “Wilson chamber and its application to physics,” Rev. Mod. Phys. 18 (2), 225–365 (1946).ADSCrossRefGoogle Scholar
  12. 12.
    A. G. Amelin, Theoretical Foundations of Fogging during Vapor Condensation (Khimiya, Moscow, 1972) [in Russian].Google Scholar
  13. 13.
    J. Kolafa, “Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules,” J. Comput. Chem. 25 (3), 335–342 (2003).CrossRefGoogle Scholar
  14. 14.
    S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flow,” Annu. Rev. Fluid Mech. 30, 329–364 (1998).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev., E 47 (3), 1815–1819 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    A. L. Kupershtokh, D. A. Medvedev, and D. I. Karpov, “On equations of state in a lattice Boltzmann method,” Comput. Math. Appl. 58 (5), 965–974 (2009).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A. L. Kupershtokh, D. A. Medvedev, and I. I. Gribanov, “Modeling of thermal flows in a medium with phase transitions using the lattice Boltzmann method,” Vychislitel’nye Metody Programmirovanie 15 (2), 317–328 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. V. Klimkin
    • 1
  • A. N. Kuryak
    • 1
  • Yu. N. Ponomarev
    • 1
  • A. S. Kozlov
    • 2
  • S. B. Malyshkin
    • 2
  • A. K. Petrov
    • 2
  • A. L. Kupershtokh
    • 3
    • 4
  • D. I. Karpov
    • 3
    • 4
  • D. A. Medvedev
    • 3
    • 4
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Voevodsky Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of ScienceNovosibirskRussia
  3. 3.Lavrentyev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.National Research Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations