Atmospheric and Oceanic Optics

, Volume 28, Issue 2, pp 185–191 | Cite as

Joint radiosonde and doppler lidar measurements of wind in the atmospheric boundary layer

  • V. A. Banakh
  • I. N. Smalikho
  • A. V. Falits
  • B. D. Belan
  • M. Yu. Arshinov
  • P. N. Antokhin
Optical Instrumentation

Abstract

Results of joint measurements of height profiles of wind velocity and direction by the Stream Line pulse coherent Doppler lidar and RS92-SGP radiosonde in Tomsk from 23 to 27 of September, 2013, are presented. It has been established that wind profiles can be retrieved up to heights from 400 to 1100 m depending on the aerosol concentration in the atmospheric boundary layer from lidar data measured at an elevation angle of 45°. It is shown that the coefficient of correlation between lidar and radiosonde measurements of wind velocity and direction is equal to 0.97. The mathematical expectation and standard deviation of the difference between estimates for the wind velocity and direction from the radiosonde and lidar data amount to 0.1 and 0.7 m/s, respectively, for the velocity and 0.8° and 4°, respectively, for the wind direction.

Keywords

atmospheric boundary layer wind coherent Doppler lidar radiosonde 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Pierson, F. Davies, and C. Collier, “An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer,” J. Atmos. and Ocean. Technol. 26 (2), 240–250 (2009).CrossRefADSGoogle Scholar
  2. 2.
    I. N. Smalikho, “Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar,” J. Atmos. and Ocean. Technol. 20 (2), 276–291 (2003).CrossRefADSGoogle Scholar
  3. 3.
    V. A. Banakh, A. Brewer, E. L. Pichugina, and I. N. Smalikho, “Measurements of wind velocity and direction with coherent doppler lidar in conditions of a weak echo signal,” Atmos. Ocean. Opt. 23 (5), 333–340 (2010).CrossRefGoogle Scholar
  4. 4.
    V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidars in a Turbulent Atmosphere (Artech House, Boston; London, 2013).Google Scholar
  5. 5.
    R. G. Frehlich, “Estimation of velocity error for Doppler lidar measurements,” J. Atmos. and Ocean. Technol. 18 (10), 1628–1639 (2001).CrossRefADSGoogle Scholar
  6. 6.
    R. G. Frehlich and L. B. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. and Ocean. Technol. 19 (3), 355–366 (2002).CrossRefADSGoogle Scholar
  7. 7.
    V. A. Banakh and I. N. Smalikho, “Estimation of the turbulence energy dissipation rate from the pulsed Doppler lidar data,” Atmos. Ocean. Opt. 10 (12), 957–965 (1997).Google Scholar
  8. 8.
    G. G. Matvienko and V. A. Pogodaev, “Atmospheric and ocean optics as uncompleted task of interaction of optical radiation with a propagation medium,” Opt. Atmos. Okeana 25 (1), 5–10 (2012).Google Scholar
  9. 9.
    I. A. Razenkov, “Aerosol lidar for continuous atmo-spheric monitoring,” Atmos. Ocean. Opt. 26 (1), 52–63 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. A. Banakh
    • 1
  • I. N. Smalikho
    • 1
  • A. V. Falits
    • 1
  • B. D. Belan
    • 1
  • M. Yu. Arshinov
    • 1
  • P. N. Antokhin
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations