Advertisement

Atmospheric and Oceanic Optics

, Volume 27, Issue 4, pp 310–312 | Cite as

Simulation of lidar measurements of profiles of atmospheric meteorological parameters using an overtone CO laser

  • G. G. MatvienkoEmail author
  • O. A. Romanovskii
  • O. V. Kharchenko
  • S. V. Yakovlev
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

Possibilities of using an overtone CO laser in the mid-IR range for lidar measurements of air humidity and temperature profiles by the differential absorption method have been studied. Wavelengths for lidar measurements of meteorological parameters are selected. Spatially and spectrally resolved lidar signals, as well as random errors of retrieval of profiles of the atmospheric meteorological parameters, have been calculated using the wavelengths.

Keywords

lidar meteorological parameters atmosphere CO laser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, O. A. Romanovskii, L. V. Seleznev, D. V. Sinitsyn, O. V. Kharchenko, A. V. Shelestovich, and S. V. Yakovlev, “Wideband CO laser in problems of laser sensing of minor gaseous components in the atmosphere,” Rus. Phys. J. 51(11), 1200–1207 (2008).CrossRefGoogle Scholar
  2. 2.
    A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, G. G. Matvienko, O. A. Romanovskii, O. V. Kharchenko, and S. V. Yakovlev, “Application of an overtone CO laser for remote gas analysis of the atmosphere,” Atmos. Ocean. Opt. 26(1), 68–73 (2013).CrossRefGoogle Scholar
  3. 3.
    J. Mason, “Lidar measurement of temperature: A new approach,” Appl. Opt. 14(14), 76–78 (1975).CrossRefADSGoogle Scholar
  4. 4.
    V. Y. Agroskin, B. G. Bravy, Y. A. Chernyshev, V. I. Kirianov, E. F. Makarov, V. G. Papin, S. A. Sotnichenko, and G. K. Vasiliev, “Multifrequency sounding with DF-laser-based lidar system: Preliminary results,” Proc. SPIE 5416, 204–212 (2004).Google Scholar
  5. 5.
    N. G. Basov, A. A. Ionin, A. A. Kotkov, A. K. Kurnosov, J. E. McCord, A. P. Napartovich, L. V. Seleznev, N. G. Tur- kin, and G. D. Hager, “Pulsed laser operating on the first overtone of the SO molecule in the the 2.5–4.2 μm range. II. Frequency-selective regime,” Quantum Electron. 30(10), 859–872 (2000).CrossRefADSGoogle Scholar
  6. 6.
    O. V. Kharchenko, “The method for planning and carrying out the lidar measurements of profiles of atmospheric meteorological parameters,” Opt. Atmosf. Okeana 25(6), 523–528 (2012).Google Scholar
  7. 7.
    V. E. Zuev and V. S. Komarov, Statistical Models of Temperature and Gaseous Components of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].Google Scholar
  8. 8.
    G. M. Krekov and R. F. Rakhimov, Optical Location Model of Continental Aerosol (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • G. G. Matvienko
    • 1
    Email author
  • O. A. Romanovskii
    • 1
    • 2
  • O. V. Kharchenko
    • 1
  • S. V. Yakovlev
    • 1
    • 2
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations