Advertisement

Atmospheric and Oceanic Optics

, Volume 25, Issue 2, pp 157–165 | Cite as

Information system for molecular spectroscopy. 5. Ro-vibrational transitions and energy levels of the hydrogen sulfide molecule

  • E. R. Polovtseva
  • N. A. Lavrentiev
  • S. S. Voronina
  • O. V. Naumenko
  • A. Z. Fazliev
Optical Models and Databases

Abstract

This work considers the verification, systematization, and publication in the W@DIS information system of all published data acquired at the moment by various authors from the analysis of high resolution, ro-vibrational spectra of hydrogen sulfide and its isotopologues. The system interface allows prompt and efficient search for any required information by specified criteria. The W@DIS information system, in its present state, contains the most complete and reliable information on ro-vibrational transitions and energy levels of the hydrogen sulfide molecule as compared with other databases. The data systematized in this work may serve as a source of information for problems of theoretical spectroscopy and chemistry, atmospheric problems, and other applications.

Keywords

Hydrogen Sulfide Oceanic Optic Molecular Spectroscopy Backward Wave Tube Experimental Energy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Cou- dert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S.T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. and Radiat. Transfer. 110(9–10), 533–572 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    N. Jacquinet-Husson, N. A. Scott, A. Chedin, L. Crepeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, N. Poulet-Crovisier, A. Barbe, M. Birk, L. R. Brown, C. Camy-Peyret, C. Claveau, K. Chance, N. Christidis, C. Clerbaux, P. F. Coheur, D. V. L. Daumont, M. R. De Backer-Barilly, G. Di. Lonardo, J.-M. Flaud, A. Goldman, A. Hamdouni, M. Hess, M. D. Hurley, D. Jacquemart, I. Kleiner, P. Köpke, J. Y. Mandin, S. Massie, S. Mikhailenko, V. Nemtchinov, A. Nikitin D. Newnham, A. Perrin, V. I. Perevalov, S. Pinnock, L. Régalia-Jarlot, C. P. Rinsland, A. Rublev, F. Schreier, L. Schult, K. M. Smith, S. A. Tashkun, J. L. Teffo, R. A. Toth, Vl. G. Tyuterev, A. J. Vander, P. Varanasi, and G. Wagner, “The GEISA Spectroscopic Database: Current and Future Archive for Earth and Planetary Atmosphere Studies,” J. Quant. Spectrosc. and Radiat. Transfer. 109(6), 1043–1059 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    A. I. Privezentsev, Candidate’s Dissertation in Engineering (IAO SB RAS, Tomsk, 2009).Google Scholar
  4. 4.
    H. Partridge and D. W. Schwenke, “The Determination of an Accurate Isotope Dependent Potential Energy Surface for Water from Extensive ab initio Calculations and Experimental Data,” J. Chem. Phys. 106(11), 4618–4639 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    H. Partridge and D. W. Schwenke, “Convergence Testing of the Analytic Representation of an ab initio Dipole Moment Function for Water: Improved Fitting Yields Improved Intensities,” J. Chem. Phys. 113(16), 6592–6597 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    A.-W. Liu, S.-M. Hu, C. Camy-Peyret, J.-Y. Mandin, O. Naumenko, and B. Voronin, “Fourier Transform Absorption Spectra of H2 17O and H2 18O in the 8000–9400 cm−1 Spectral Region,” J. Mol. Spectrosc. 237(1), 53–62 (2006).ADSCrossRefGoogle Scholar
  7. 8.
    A. D. Bykov, B. A. Voronin, A. V. Kozodoev, N. A. Lavrent’ev, O. B. Rodimova, and A. Z. Fazliev, “Information System for Molecular Spectroscopy. 1. Structure of Information Resources,” Atmos. Ocean. Opt. 17(11), 816–820 (2004).Google Scholar
  8. 9.
    A. V. Kozodoev, A. I. Privezentsev, and A. Z. Fazliev, “Information System for Molecular Spectroscopy. 3. Molecular Energy Levels,” Atmos. Ocean. Opt. 20(9), 736–740 (2007).Google Scholar
  9. 10.
    N. A. Lavrent’ev, A. I. Privezentsev, and A. Z. Fazliev, “Informational System for the Solution of Molecular Spectroscopy Problems. 4. Transitions in Molecules of C2v and Cs Symmetry,” Atmos. Ocean. Opt. 21(11), 836–841 (2008).Google Scholar
  10. 11.
    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Császár, R. R. Gamache, J. T. Hodges, A. Jenouvrier, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. Zobov, L. Daumont, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, S. N. Mikhailenko, and S. V. Shirin, “IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part I. Energy Levels and Transition Wavenumbers for H2 17O and H2 18O,” J. Quant. Spectrosc. and Radiat. Transfer. 110(9–10), 573–596 (2009).ADSCrossRefGoogle Scholar
  11. 12.
    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campar- gue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, S. Fally, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, Hu. Shui-Ming, S. N. Mikhailenko, and B. A. Voronin, “IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Levels and Transition Wavenumbers for HD16O, HD17O, and HD18O,” J. Quant. Spectrosc. and Radiat. Transfer. 111(15), 2160–2184 (2010).ADSCrossRefGoogle Scholar
  12. 13.
    P. Jensen, “An Introduction to the Theory of Local Mode Vibrations,” J. Mol. Phys. 98(17), 1253–1285 (2000).ADSCrossRefGoogle Scholar
  13. 14.
    A. Z. Fazliev, A. G. Csaszar, and J. Tennyson, “W@DIS: Water Spectroscopy Information System,” in Proceedings of the 10th HITRAN Database Conference (2008), p. 38–39.Google Scholar
  14. 15.
    A. D. Bykov, O. V. Naumenko, L. N. Sinitsa, O. B. Rodimova, S. D. Tvorogov, M. V. Tonkov, A. Z. Fazliev, and N. N. Filippov, Information Aspects of Molecular Spectroscopy (Publishing House of IAO SB RAS, Tomsk, 2008) [in Russian].Google Scholar
  15. 16.
    Ch. A. Burrus, Jr. and W. Gordy, “One-to-Two Millimeter Wave Spectroscopy. II. H2S,” Phys. Rev. 92(2), 274–277 (1953).ADSCrossRefGoogle Scholar
  16. 17.
    R. E. Cupp, R. A. Kempf, and J. J. Gallagher, “Hyperfine Structure in the Millimeter Spectrum of Hydrogen Sulfide: Electric Resonance Spectroscopy on Asymmetric-Top Molecules,” Phys. Rev. 171(1), 60–69 (1968).ADSCrossRefGoogle Scholar
  17. 18.
    C. A. Huiszoon, “High Resolution Spectrometer for the Shorter Millimeter Wavelength Region,” Rev. Sci. Instrum. 42(4), 477–481 (1971).ADSCrossRefGoogle Scholar
  18. 19.
    Paul Helminger, Robert L. Cook, and Frank C. De Lucia, “Microwave Spectrum and Centrifugal Distortion Effects of H2S,” J. Chem. Phys. 56(9), 4581 (1972).ADSCrossRefGoogle Scholar
  19. 20.
    J.-M. Flaud, C. Camy-Peyret, and J. W. C. Johns, “The Far-Infrared Spectrum of Hydrogen Sulphide. The (000) Rotational Constants H232S H233S and H234S” Can. J. Phys. 61, 1462–1473 (1983).ADSCrossRefGoogle Scholar
  20. 21.
    V. Burenin, T. M. Fevral’skikh, A. A. Mel’nikov, and S. M. Shapin, “Microwave Spectrum of the Hydrogen Sulfide Molecule H232S in the Ground State,” J. Mol. Spectrosc. 109(1), 1–7 (1985).ADSCrossRefGoogle Scholar
  21. 22.
    S. P. Belov, K. M. T. Yamada, G. Winnewisser, L. Poteau, R. Bocquet, J. Demaison, O. Polyansky, and M. Y. Tretyakov, “Terahertz Rotational Spectrum of H2S,” J. Mol. Spectrosc. 173(2), 380–390 (1995).ADSCrossRefGoogle Scholar
  22. 23.
    P. Helminger, F. C. De Lucia, and W. H. Kirchhoff, “Microwave Spectra of Molecules of Astrophysical Interest IV. Hydrogen Sulfide,” J. Phys. Chem. Ref. Data 2(2), 215–223 (1973).ADSCrossRefGoogle Scholar
  23. 24.
    Wm. C. Lane, T. H. Edwards, J. R. Gillis, F. S. Bonomo, and F. J. Murcray, “Analysis of ν2 of H2S,” J. Mol. Spectrosc. 95(2), 365–380 (1982).ADSCrossRefGoogle Scholar
  24. 25.
    L. L. Strow, “Measurement and Analysis of the ν2 Band of H2S: Comparison among Several Reduced Forms of the Rotational Hamiltonian,” J. Mol. Spectrosc. 97(1), 9–28 (1983).ADSCrossRefGoogle Scholar
  25. 26.
    O. N. Ulenikov, A. B. Malikova, M. Koivusaari, S. Alanko, R. Anttila, “High Resolution Vibrational-Rotational Spectrum of H2S in the Region of the ν2 Fundamental Band,” J. Mol. Spectrosc. 176(2), 229–235 (1996).ADSCrossRefGoogle Scholar
  26. 27.
    L. L. Strow, “Line Strength Measurements Using Diode Lasers: the ν2 Band of H2S,” J. Quant. Spectrosc. and Radiat. Transfer. 29(5), 395–406 (1983).ADSCrossRefGoogle Scholar
  27. 28.
    J. R. Gillis and T. H. Edwards, “Analysis of 2ν2, ν1 and ν3 of H2S,” J. Mol. Spectrosc. 85(1), 55–73 (1981).ADSCrossRefGoogle Scholar
  28. 29.
    L. Lechuga-Fossat, J. Flaud, C. Camy-Peyret, and J.W. C. Jones, “The Spectrum of Natural Hydrogen Sulfide between 2150 and 2950 cm−1,” Can. J. Phys. 62(12), 1889–1923 (1984).ADSCrossRefGoogle Scholar
  29. 30.
    L. Brown, J. Crisp, D. Crisp, O. Naumenko, M. Smirnov, L. Sinitsa, and A. Perrin, “The Absorption Spectrum of H2S between 2150 and 4260 cm−1: Analysis of the Position and Intensities in the First (2ν2, ν1 and ν3) and Second (3ν2, ν1 + ν2 and ν2 + ν3) Triad Regions,” J. Mol. Spectrosc. 188(2), 148–174 (1998).ADSCrossRefGoogle Scholar
  30. 31.
    L. E. Snyder and T. H. Edwards, “Simultaneous Analysis of the (110) and (011) Bands of Hydrogen Sulfide,” J. Mol. Spectrosc. 31(1–13), 347–361 (1969).ADSCrossRefGoogle Scholar
  31. 32.
    O. Ulenikov, G. Onopenko, M. Koivusaari, S. Alanko, and R. Anttila, “High Resolution Fourier Trasform Spectrum of H2S in the 3300–4080 cm−1 Region,” J. Mol. Spectrosc. 176(2), 236–250 (1996).ADSCrossRefGoogle Scholar
  32. 33.
    L. R. Brown, J. A. Crisp, D. Crisp, O. V. Naumenko, M. A. Smirnov, and L. N. Sinitsa, “First Hexad of Interacting States of H2S Molecule,” in Proc. SPIE 3090, 111–113 (1997).ADSCrossRefGoogle Scholar
  33. 34.
    E. R. Polovtseva, Candidate’s Dissertation in Mathematics and Physics (IAO SB RAS, Tomsk, 2006).Google Scholar
  34. 35.
    L. L. Lechuga-Fossat, J. F. C. Camy-Peyret, P. Arcas, and M. Cuisenier, “The H2S Spectrum in the 1.6 μm Spectral Region,” Mol. Phys. 61(1), 23–32 (1987).ADSCrossRefGoogle Scholar
  35. 36.
    L. R. Brown, O. V. Naumenko, E. R. Polovtseva, and L. N. Sinitsa, “Hydrogen Sulfide Absorption Spectrum in the 5700–6600 cm−1 spectral region,” Proc. SPIE 5311, 59–67 (2003).ADSCrossRefGoogle Scholar
  36. 37.
    O. N. Ulenikov, A.-W. Liu, E. S. Bekhtereva, O. V. Gromova, L.-Y. Hao, and S.-M. Hu, “High Resolution Fourier Transform Spectrum of H2S in the Region of the Second Hexade,” J. Mol. Spectrosc. 234(2), 270–278 (2005).ADSCrossRefGoogle Scholar
  37. 38.
    O. N. Ulenikov, A.-W. Liu, E. S. Bekhtereva, O. V. Gromova, L.-Y. Hao, and S.-M. Hu, “On the study of High Resolution Rovibrational Spectrum of H2S in the Region of 7300–7900 cm−1,” J. Mol. Spectrosc. 226(1), 57–70 (2004).ADSCrossRefGoogle Scholar
  38. 39.
    L. R. Brown, O. V. Naumenko, E. R. Polovtseva, and L. N. Sinitsa, “Absorption Spectrum of H2S between 7200 and 7890 cm−1,” Proc. SPIE 5396, 42–48 (2004).Google Scholar
  39. 40.
    O. N. Ulenikov, A.-W. Liu, E. S. Bekhtereva, S. V. Grebneva, W.-P. Deng, O. V. Gromova, and S.-M. Hu, “High Resolution Fourier Transform Spectrum of H2S in the Region of 8500–8900 cm−1,” J. Mol. Spectrosc. 228(1), 110–119 (2004).ADSCrossRefGoogle Scholar
  40. 41.
    L. R. Brown, O. V. Naumenko, E. R. Polovtseva, and L. N. Sinitsa, “Hydrogen Sulfide Absorption Spectrum in the 8400–8900 cm−1 Spectral Region,” Proc. SPIE 5743, 1–7 (2004).ADSCrossRefGoogle Scholar
  41. 42.
    A. Bykov, O. Naumenko, M. Smirnov, L. Sinitsa, L. Brown, J. Crisp, and D. Crisp, “The Infrared Spectrum of H2S from 1 to 5 μm,” Can. J. Phys. 72(11–12), 989–999 (1994)ADSCrossRefGoogle Scholar
  42. 43.
    Y. Ding, O. Naumenko, Hu Shui-Ming, Zhu Qingshi, E. Bertseva, and A. Campargue, “The Absorption Spectrum of H2S between 9540 and 10000 cm−1 by Intracavity Laser Absorption Spectroscopy with a Vertical External Cavity Surface Emitting Laser,” J. Mol. Spectrosc. 217(2), 222–223 (2003).ADSCrossRefGoogle Scholar
  43. 44.
    O. Naumenko and A. Campargue, “Local Mode Effects in the Absorption Spectrum of H2S between 10780 and 11330 cm−1,” J. Mol. Spectrosc. 209(2), 242–253 (2001).ADSCrossRefGoogle Scholar
  44. 45.
    O. Vaittinen, L. Biennier, A. Campargue, J. Flaud, and L. Halonen, “Local Mode Effects on the High-Resolution Overtone Spectrum of H2S around 12500 cm−1,” J. Mol. Spectrosc. 184(2), 288–299 (1997).ADSCrossRefGoogle Scholar
  45. 46.
    A. Campargue and J. Flaud, “The Overtone Spectrum of H2 32S near 13200 cm−1,” J. Mol. Spectrosc. 194(1), 43–51 (1999).ADSCrossRefGoogle Scholar
  46. 47.
    J. Flaud, O. Vaittinen, and A. Campargue, “The H2S Spectrum around 0.7 μm,” J. Mol. Spectrosc. 190(2), 262–268 (1998).ADSCrossRefGoogle Scholar
  47. 48.
    O. Naumenko and A. Campargue, “H2S: First Observation of the (70±,0) Local Mode Pair and Updated Global Effective Vibrational Hamiltonian,” J. Mol. Spectrosc. 210(2), 224–232 (2001).ADSCrossRefGoogle Scholar
  48. 49.
    R. Großkloß, S. B. Rai, R. Stuber, and W. Demtröder, “Diode Laser Overtone Spectroscopy of Hydrogen Sulfid,” Chem. Phys. Lett. 229(6), 609–615 (1994).ADSCrossRefGoogle Scholar
  49. 50.
    J.-M. Flaud, R. Großkloß, S. B. Rai, R. Stuber, W. Demtröder, D. A. Tate, L.-G. Wang, and Th. F. Gallaher, “Diode Laser Spectroscopy of H2 32S around 0.82 μm,” J. Mol. Spectrosc. 172(1), 275–281 (1995).ADSCrossRefGoogle Scholar
  50. 51.
    O. Naumenko and E. Polovtseva, “Labeling of Pure Vibrational States of Water-Like Molecules,” Proc. SPIE, 7296-01 (2009).Google Scholar
  51. 52.
    O. V. Naumenko and E. R. Polovtseva, “Database of the Hydrogen Sulfide Absorption in the 4400–11400 cm−1 Region”, Atmos. Ocean. Opt. 16(11), 900–906 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. R. Polovtseva
    • 1
  • N. A. Lavrentiev
    • 1
  • S. S. Voronina
    • 1
  • O. V. Naumenko
    • 1
  • A. Z. Fazliev
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations