Atmospheric and Oceanic Optics

, Volume 25, Issue 2, pp 127–129 | Cite as

Method for calculating moments of the Wigner distribution function of laser beams in a turbulent atmosphere

  • D. A. Marakasov
  • D. S. Rytchkov
Optics of Randomly Inhomogeneous Media


A method for calculating the moments of the Wigner distribution function is proposed for laser beams having an arbitrary initial shape and propagating in a turbulent atmosphere; the spectrum of the correlation function of fluctuations of the refractive index and the profile of the structural characteristic are supposed to be arbitrary. The main relations for calculating the moments of the Wigner distribution and some parameters of the beam are presented.


Fast Fourier Transform Gaussian Beam Optical Wave Turbulent Atmosphere Wigner Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. T. Eyyuboğlu and E. Sermutlu, “Calculation of Average Intensity via Semi-analytic Method,” Appl. Phys., B 98(4), 865–870 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    X. Chu, Z. Liu, and Y. Wu, “Propagation of a Multi-Gaussian Beam in Turbulent Atmosphere in a Slant Path,” J. Opt. Soc. Am., A 25(1), 74–79 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    X. Ji, X. Chen, and B. Lu, “Spreading and Directionality of Partially Coherent Hermite-Gaussian Beams Propagating through Atmospheric Turbulence,” J. Opt. Soc. Am., A 25(1), 21–28 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    X. Ji, X. Chen, S. Chen, X. Li, and B. Lu, “Influence of Atmospheric Turbulence on the Spatial Correlation Properties of Partially Coherent Flat-Topped Beams,” J. Opt. Soc. Am., A 24(11), 3554–3563 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, Y. K. Baykal, and O. Korotkova, “M2-Factor of Coherent and Partially Coherent Dark Hollow Beams Propagating in Turbulent Atmosphere,” Opt. Express. 17(20), 344–356 (2009).CrossRefGoogle Scholar
  6. 6.
    L. S. Dolin, “Equation for the Correlation Functions of a Wave Beam in a Chaotically Inhomogeneous Medium,” Izv. Vuzov, Radiofiz. 11(6), 840–849 (1968).Google Scholar
  7. 7.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Random Fields (Nauka, Moscow, 1978).Google Scholar
  8. 8.
    A. Ishimaru, Wave Propagation and Scattering Media (Academic, New York, 1978), Vol. 2.Google Scholar
  9. 9.
    D. A. Marakasov and D. S. Rytchkov, “Method of Evaluation of Mutual Coherence Function of an Optical Wave Propagating in Turbulent Atmosphere,” Opt. Atmos. Okeana 23(9), 761–767 (2010).Google Scholar
  10. 10.
    R. Martinez-Herrero and P. M. Mejias, “Second-Order Spatial Characterization of Hard-Edge Diffracted Beams,” Opt. Lett. 18(19), 1669–1671 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    R. Martinez-Herrero, P. M. Mejias, and M. Arias, “Parametric Characterization of Coherent, Lowest-Order Gaussian Beams Propagation Through Hard-Edged Apertures,” Opt. Lett. 20(2), 124–126 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    V. P. Kandidov, “Monte Carlo Method in Nonlinear Statistical Optics,” Phys. Uspekhi 166(12), 1243–1272 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. A. Marakasov
    • 1
  • D. S. Rytchkov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations