Advertisement

Atmospheric and Oceanic Optics

, Volume 25, Issue 1, pp 62–70 | Cite as

Climate model calculations of the impact of aerosols from road transport and shipping

  • K. P. Shine
  • E. J. Highwood
  • G. Rädel
  • N. Stuber
  • Y. Balkanski
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

Road transport and shipping are copious sources of aerosols, which exert a significant radiative forcing, compared to, for example, the CO2 emitted by these sectors. An advanced atmospheric general circulation model, coupled to a mixed-layer ocean, is used to calculate the climate response to the direct radiative forcing from such aerosols. The cases considered include imposed distributions of black carbon and sulphate aerosols from road transport, and sulphate aerosols from shipping; these are compared to the climate response due to CO2 increases. The difficulties in calculating the climate response due to small forcings are discussed, as the actual forcings have to be scaled by large amounts to enable a climate response to be easily detected. Despite the much greater geographical inhomogeneity in the sulphate forcing, the patterns of zonal and annual-mean surface temperature response (although opposite in sign) closely resembles that resulting from homogeneous changes in CO2. The surface temperature response to black carbon aerosols from road transport is shown to be notably non-linear in scaling applied, probably due to the semi-direct response of clouds to these aerosols. For the aerosol forcings considered here, the most widespread method of calculating radiative forcing significantly overestimates their effect, relative to CO2, compared to surface temperature changes calculated using the climate model.

Keywords

Black Carbon Climate Sensitivity Transport Sector Climate Response Road Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Eyring, I. S. A. Isaksen, T. Berntsen, W. J. Collins, J. J. Corbett, O. Endresen, R. G. Grainger, J. Moldanova, H. Schlager, and D. S. Stevenson, “Transport Impacts on Atmosphere and Climate: Shipping,” Atmos. Environ. 44, 4735–4771 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    D. S. Lee, G. Pitari, V. Grewe, K. Gierens, J. E. Penner, A. Petzold, M. J. Prather, U. Schumann, A. Bais, T. Berntsen, D. Iachetti, L. L. Lim, and R. Sausen, “Transport Impacts on Atmosphere and Climate: Aviation,” Atmos. Environ. 44, 4678–4734 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    E. Uherek, T. Halenka, J. Borken-Kleefeld, Y. Balkanski, T. Berntsen, C. Borrego, M. Gauss, P. Hoor, K. Juda-Rezler, J. Lelieveld, D. Melas, K. Rypdal, and S. Schmid, “Transport Impacts on Atmosphere and Climate: Land Transport,” Atmos. Environ. 44, 4772–4816 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Balkanski, G. Myhre, M. Gauss, G. Rädel, E. J. Highwood, and K. P. Shine, “Direct Radiative Effect of Aerosols Emitted by Transport: from Road, Shipping and Aviation,” Atmos. Chem. Phys. 10, 4477–4489 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    J. Cook and E. J. Highwood, “Climate Response to Tropospheric Aerosols in an Intermediate General Circulation Model,” Q. J. R. Meteorol. Soc. 130, 175–191 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    J. Hansen, M. Sato, R. Ruedy, L. Nazarenko, A. Lacis, G. A. Schmidt, G. Russell, I. Aleinov, M. Bauer, S. Bauer, N. Bell, B. Cairns, V. Canuto, M. Chandler, Y. Cheng, A. Del Genio, G. Faluvegi, E. Fleming, A. Friend, T. Hall, C. Jackman, M. Kelley, N. Y. Kiang, D. Koch, J. Lean, J. Lerner, K. Lo, S. Menon, R. L. Miller, P. Minnis, T. Novakov, V. Oinas, Ja. Perlwitz, Ju. Perlwitz, D. Rind, A. Romanou, D. Shindell, P. Stone, S. Sun, N. Tausnev, D. Thresher, B. Wielicki, T. Wong, M. Yao, and S. Zhan, “Efficacy of Climate Forcings,” J. Geophys. Res. 110, D18104 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    D. Rind, P. Lonergan, and K. Shah, “Climatic Effect of Water Vapor Release in the Upper Troposphere,” J. Geophys. Res. 101, 29395–29405, doi: 10.1029/96JD02747 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    M. Ponater, S. Marquart, R. Sausen, and U. Schumann, “On Contrail Climate Sensitivity,” Geophy. Res. Lett. 32, L10706 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    M. Ponater, S. Dietmüller, N. Stuber, K. P. Shine, E. J. Highwood, and G. Rädel, “Indications of Distinctive Efficacies for Transport Related Ozone Perturbations,” in Proc. of the 2nd International Conference on Transport, Atmosphere and Climate Forschungbericht 2010-10, Ed. by R. Sausen, P.F.J. van Velthoven, C. Brüning, and A. Blum (Deutches Zentrum fur Luft und Raumfurht, Munich, 2010), pp. 95–101 (http://www.pa.op.dlr.de/tac/2009/proceedings.html).Google Scholar
  10. 10.
    K. D. Williams, C. A. Senior, and J. F. B. Mitchell, “Transient Climate Change in the Hadley Centre Models: The Role of Physical Processes,” J. Climate. 14, 2659–2674 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    C. Gordon, C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, “The simulation of SST, Sea Ice Extents and Ocean Heat Transports in a Version of the Hadley Centre Coupled Model Without Flux Adjustments,” Clim. Dyn. 16, 147–168 (2000).CrossRefGoogle Scholar
  12. 12.
    V. D. Pope, M. L. Gallani, P. R. Rowntree, and R. A. Stratton, “The Impact of New Physical Parametrizations in the Hadley Centre Climate Model: HadAM3,” Clim. Dyn. 16, 123–146 (2000).CrossRefGoogle Scholar
  13. 13.
    R. N. B. Smith, “A scheme for Predicting Layer Clouds and their Water Content in a General Circulation Model,” Q. J. R. Meteorol. Soc. 116, 435–460 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    D. Gregory and D. Morris, “The Sensitivity of Climate Simulations to the Specification of Mixed Phase Clouds,” Clim. Dyn. 12, 641–651 (1996).Google Scholar
  15. 15.
    J. M. Edwards and A. Slingo, “Studies with a Flexible New Radiation Code. I: Choosing a Configuration for a Large-Scale Model,” Q. J. R. Meteorol. Soc. 122, 689–719 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    K. P. Shine, J. Cook, E. J. Highwood, and M. M. Joshi, “Alternative to Radiative Forcing for Estimating the Relative Importance of Climate Change Mechanisms,” Geophys. Res. Lett. 30, 2047 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    J. M. Gregory, W. J. Ingram, M. A. Palmer, G. S. Jones, P. A. Stott, R. B. Thorpe, J. A. Lowe, T. C. Johns, and K. D. Williams, “A New Method for Diagnosing Radiative Forcing and Climate Sensitivity,” Geophys. Res. Lett. 31, L03205 (2004).CrossRefGoogle Scholar
  18. 18.
    J. Gregory and M. Webb, “Tropospheric Adjustment Induces a Cloud Component in CO2 forcing,” J. Climate 2, 58–71 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, (Cambridge Univ. Press, Cambridge; New York, 2007), pp. 129–234.Google Scholar
  20. 20.
    J. E. Penner, S. Y. Zhang, and C. C. Chuang, “Soot and Smoke Aerosol May not Warm Climate,” J. Geophys. Res. 108, 4657 (2003).CrossRefGoogle Scholar
  21. 21.
    J. M. Haywood and V. Ramaswamy, “Global Sensitivity Studies of the Direct Radiative Forcing due to Anthropogenic Sulphate and Black Carbon Aerosols,” J. Geophys. Res. 103(D6), 6043–6058 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    J. F. B. Mitchell, C. A. Senior, and W. J. Ingram, “CO2 and Climate: A Missing Feedback?,” Nature 341, 132–143 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    D. L. Roberts and A. Jones, “Climate Sensitivity to Black Carbon Aerosol from Fossil Fuel Combustion,” J. Geophys. Res. 109, D16202 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    A. Jones, J. M. Haywood, and O. Boucher, “Aerosol Forcing, Climate Response and Climate Sensitivity in the Hadley Centre Climate Model,” J. Geophys. Res. 112, D20211 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    M. Joshi, K. Shine, M. Ponater, N. Stuber, R. Sausen, and L. Li, “A Comparison of Climate Response to Different Radiative Forcings in Three General Circulation Models: towards an Improved Metric of Climate Change,” Clim. Dyn. 20, 843–854 (2003).Google Scholar
  26. 26.
    G. J. Boer and B. Yu, “Climate Sensitivity and Response,” Clim. Dyn. 20, 415–429 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • K. P. Shine
    • 1
  • E. J. Highwood
    • 1
  • G. Rädel
    • 1
  • N. Stuber
    • 1
  • Y. Balkanski
    • 1
  1. 1.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations