Advertisement

Atmospheric and Oceanic Optics

, Volume 25, Issue 1, pp 77–81 | Cite as

Optical parametric oscillator within 2.4–4.3 μm pumped with a nanosecond Nd:YAG Laser

  • D. B. Kolker
  • R. V. Pustovalova
  • M. K. Starikova
  • A. I. Karapuzikov
  • A. A. Karapuzikov
  • O. M. Kuznetsov
  • Yu. V. Kistenev
Optical Instrumentation

Abstract

An optical parametric oscillator has been designed on the basis of MgO:PPLN periodic structure. A compact nanosecond Nd:YAG laser has been used as a pump source at 1.053 μm. The pump pulse length is 5–7 ns at a maximum pulse energy of 300 μJ and a frequency of 1000–5000 Hz. The oscillation threshold is 22 μJ at 3 μm and 48 μJ at 4.3 μm. The maximum conversion efficiency from incident pump power to the idler output is 3.9%.

Keywords

Optical Parametric Oscillator Incident Pump Power Idler Wavelength PPLN Crystal Maximum Conversion Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Kaminskii, “Laser Crystals and Ceramics: Recent Advances,” Laser & Photon Rev. 1, 93–177 (2007).CrossRefGoogle Scholar
  2. 2.
    V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The Nonlinear Coefficient d 36 of CdSiP2,” Proc. SPIE 197, 7197-21/1-8 (2009).Google Scholar
  3. 3.
    G. Marchev, A. Tyazhev, V. Vedenyapin, and D. Kolker, “Nd:YAG Pumped Nanosecond Optical Parametric Oscillator Based on LiInSe2 with Tunability Extending from 4.7 to 8.7 μm,” Opt. Express 17(16), 13441–13446 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, Thermal, Electrical, Damage, and Phase-Matching Properties of Lithium Selenoindate,” J. Opt. Soc. Amer. B 27(9), 1902–1927 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-Phase-Matched Optical Parametric Oscillators in Bulk Periodically Poled LiNbO3,” J. Opt. Soc. Amer. B 12(11), 2102–2116 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    Springer Handbook of Lasers and Optics, Ed. By Frank Trager (Springer Science+Business Media, LLC, N.Y., 2007).Google Scholar
  7. 7.
    G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. B 39(8), 3597–3639 (1968).ADSGoogle Scholar
  8. 8.
    B. Lai, N. C. Wong, and L. K. Cheng, “Continuous-Wave Tunable Light Source at 1.6 μm by Difference-Frequency Mixing in CsTiOAsO4,” Opt. Lett. 20(17), 1779–1781 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    H. Schnatz, B. Ligghardt, J. Helmke, F. Riehle, and G. Zinner, “First Phase-Coherent Frequency Measurement of Visible Radiation,” Phys. Rev. Lett. B 76(1), 18–21 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    V. A. Vasil’ev, A. I. Karapuzikov, A. A. Karapuzikov, and I. V. Sherstov, RF Patent No. 90905 (October 20, 2010).Google Scholar
  11. 11.
    B. G. Ageev, Yu. V. Kistenev, O. Yu. Nikiforova, E. S. Nikotin, G. S. Nikotina, and V. A. Fokin, “The Use of Integral Estimation of the Object State for the Expired Air Analysis and Human Diseases Diagnosis,” Optika Atmos. Okeana 23(7), 570–579 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. B. Kolker
    • 1
    • 2
    • 3
  • R. V. Pustovalova
    • 2
  • M. K. Starikova
    • 1
  • A. I. Karapuzikov
    • 2
  • A. A. Karapuzikov
    • 3
  • O. M. Kuznetsov
    • 2
    • 3
  • Yu. V. Kistenev
    • 4
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia
  2. 2.Institute of Laser Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Special technologies, Ltd.NovosibirskRussia
  4. 4.Siberian State Medical UniversityTomskRussia

Personalised recommendations