Atmospheric and Oceanic Optics

, Volume 23, Issue 5, pp 375–380 | Cite as

Use of a block-iterative algorithm for retrieving aerosol integral size distributions from sun spectrophotometry data

  • V. V. Veretennikov
  • S. S. Men’shchikova
Optics of Clusters, Aerosols, and Hydrosoles


A modified method is presented for retrieving aerosol integral size distributions in solar photometry problems. The presence of fine and coarse fractions of particles in the atmosphere is assumed. The initial matrix of the system is subdivided into four blocks in accordance with two particle fractions and two spectral regions, i.e., short and long wavelengths. Each of the two fractional integral size distributions is retrieved separately using a block-iterative inversion algorithm with a further iterative correction. The capabilities of the suggested method are numerically estimated in comparison with the results of the inversion for the entire particle ensemble.


Aerosol Optical Depth Microstructure Parameter Geometrical Cross Section Inverse Problem Solution Radiation Extinction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Solar-Photometer for Scientific Monitoring (Instrumentation, Techniques, Algorithms),” Opt. Atmosf. Okeana 14, 1162–1169 (2001).Google Scholar
  2. 2.
    V. V. Veretennikov, “Inverse Problems of Solar Photometry for Integral Aerosol Distributions. I. Theory and Numerical Experiment in Sub-Micron Range of Particle,” Opt. Atmosf. Okeana 19, 294–300 (2006) [Atmos. Ocean Opt. 19, 351 (2006)].Google Scholar
  3. 3.
    D. M. Kabanov, V. V. Veretennikov, Yu. V. Voronina, S. M. Sakerin, and Yu. S. Turchinovich, “Information System for Network Solar Photometers,” Opt. Atmosf. Okeana 22, 61–67 (2009) [Atmos. Ocean. Opt. 22, 121 (2009)].Google Scholar
  4. 4.
    A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola, Regularizing Algoritms and A Priori Information (Nauka, Moscow, 1983) [in Russian].Google Scholar
  5. 5.
    H. C. Van De Hulst, Light Scattering by Small Particles (Dover Publications, 1981; Inostr. Liter., Moscow, 1961).Google Scholar
  6. 6.
    A. Angstrom, “Parameters of Atmospheric Turbidity,” Tellus 15, 64–75 (1964).CrossRefGoogle Scholar
  7. 7.
    S. M. Sakerin and D. M. Kabanov, “About Correlations between the Angström Formula Parameters and the Aerosol Optical Thickness of the Atmosphere in the Wave Length Range from 1 to 4 μm,” Opt. Atmosf. Okeana 20, 222–228 (2007).Google Scholar
  8. 8.
    D. Deirmenjian, Electromagnetic Scattering on Atmospheric Polydispersions (Am. Elsevier, New York, 1968; Mir, Moscow, 1971).Google Scholar
  9. 9.
    V. V. Veretennikov, “Inverse Problems of Solar Photometry for Integral Aerosol Distributions. II. Separation Into Sub-Micron and Coarse Fractions,” Opt. Atmosf. Okeana 19, 301–307 (2006).Google Scholar
  10. 10.
    V. V. Veretennikov, “Simultaneous Determination of Aerosol Microstructure and Index of Refraction from Solar Photometry Data,” Opt. Atmosf. Okeana 20, 214–221 (2007).Google Scholar
  11. 11.
    V. V. Veretennikov, D. M. Kabanov, and S. M. Sakerin, Analysis of Parameters of Aerosol Microstructure According by Data of Solar Photometer Measurements during Summer Period over Tomsk, in Proc. of the 15th Working Group Aerosols of Siberia (IOA SO RAN, Tomsk, 2008), P. 55.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. V. Veretennikov
    • 1
  • S. S. Men’shchikova
    • 1
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations