Advertisement

Russian Journal of Electrochemistry

, Volume 55, Issue 10, pp 962–969 | Cite as

Protein-Based Nanobiosensor for Electrochemical Determination of Hydrogen Peroxide

  • Z. Tamleh
  • R. RafipourEmail author
  • S. Kashanian
Article
  • 12 Downloads

Abstract

We designed a hydrogen peroxide biosensor. The electrochemical detection of H2O2 was performed based on immobilization of cobalt nanoparticles–ferritin (CoNPs–Fer) onto multiwalled carbon nanotubes (MWCNTS) ensnared into chitosan (CS) matrices. Electrochemical techniques such as differential pulse voltammetry (DPV) and cyclic voltammetry (CV) was used to check the property of biosensor. Energy-dispersive X-ray spectroscopy (EDXS) and field emission scanning electron microscopy (FESEM) techniques showed the prosperous immobilization of CoNPs–Fer on the modified GC electrode surface. The hydrogen peroxide-designed biosensor displayed a linear range from 0.2 to 14 nM (R2 = 0.99), a detection limit of 1.29 nM (S/N = 3) and sensitivity of –0.1105 μA/nM.The apparent heterogeneous electron transfer rate constant (Ks) and the charge transfer coefficient (α) were gained 4.19 s–1 and 0.49, respectively. This biosensor can detect hydrogen peroxide with high sensitivity, selectivity, and low detection limit.

Keywords:

nanobiosensor cobalt nanoparticles–ferritin hydrogen peroxide determination 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Kelley, E.E., Khoo, N.K., Hundley, N.J., Malik, U.Z., Freeman, B.A., and Tarpey, M.M., Hydrogen peroxide is the major oxidant product of xanthine oxidase, Free Radic. Biol. Med., 2010, vol. 48, no. 4, p. 493.CrossRefGoogle Scholar
  2. 2.
    Lacy, F., Gough, D.A., and Schmid-Schönbein, G.W., Role of xanthine oxidase in hydrogen peroxide production, Free Radic. Biol. Med., 1998, vol. 25, no. 6, p. 720.CrossRefGoogle Scholar
  3. 3.
    BienertJan, G.P., Schjoerring, J.K., and Jahn, T.P., Membrane transport of hydrogen peroxide, Biochim. Biophys. Acta, 2006, vol. 1758, p. 994.CrossRefGoogle Scholar
  4. 4.
    Rafipour, R., Kashanian, S., and Tarighat, F.A., Sensitive electrochemical biosensing of H2O2 based on cobalt nanoparticles synthesised in iron storage protein molecules, IET Nanobiotechnol., 2014, vol. 8, no. 4, p. 196.CrossRefGoogle Scholar
  5. 5.
    Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalayci, O., Oxidative stress and antioxidant defense, World Allergy Organ J., 2012, vol. 5, p. 9.CrossRefGoogle Scholar
  6. 6.
    Nasir, M., Rauf, S., Muhammad, N., Nawaz, M.H., Chaudhry, A.A., Malik, M.H., Shahid, S.A., and Hayat, A., Biomimetic nitrogen doped titania nanoparticles as a colorimetric platform for hydrogen peroxide detection, J. Colloid Interface Sci., 2017, vol. 505, p. 1147.CrossRefGoogle Scholar
  7. 7.
    Farrokhnia, M., Karimi, S., Momeni, S., and Khalililaghab, S., Colorimetric sensor assay for detection of hydrogen peroxide using green synthesis of silver chloride nanoparticles: experimental and theoretical evidence, Sens. Actuat. B: Chem., 2017, vol. 246, p. 979.CrossRefGoogle Scholar
  8. 8.
    Sherino, B., Mohamad, S., Halim, S.N.A., and Manan, N.S.A., Electrochemical detection of hydrogen peroxide on a new microporous Ni-metal organic framework material-carbon paste electrode, Sens. Actuat. B: Chem., 2018, vol. 254, p. 1148.CrossRefGoogle Scholar
  9. 9.
    Wu, Y. and Hu, S., Biosensors based on direct electron transfer in redox proteins, Microchim. Acta, 2007, vol. 159, nos. 1–2, p. 1.CrossRefGoogle Scholar
  10. 10.
    Zhang, W. and Li, G., Third-generation biosensors based on the direct electron transfer of proteins, Anal. Sci., 2004, vol. 20, no. 4, p. 603.CrossRefGoogle Scholar
  11. 11.
    Kashanian, S., Rafipour, R., Tarighat, F., and Ravan, H., Immobilisation of cobaltferritin onto gold electrode based on self-assembled monolayers, IET Nanobiotechnol., 2012, vol. 6, no. 3, p. 102.CrossRefGoogle Scholar
  12. 12.
    Kashanian, S., Tarighat, F.A., Rafipour, R., and Abbasi-Tarighat, M., Biomimetic synthesis and characterization of cobalt nanoparticles using apoferritin, and investigation of direct electron transfer of Co (NPs)–ferritin at modified glassy carbon electrode to design a novel nanobiosensor, Mol. Biol. Rep., 2012, vol. 39, no. 9, p. 8793.CrossRefGoogle Scholar
  13. 13.
    Rafipour, R., Kashanian, S., Hashemi, S., Shahabadi, N., and Omidfar, K., An electrochemical biosensor based on cobalt nanoparticles synthesized in iron storage protein molecules to determine ascorbic acid, Biotechnol. Appl. Biochem., 2016, vol. 63, no. 5, p. 740.CrossRefGoogle Scholar
  14. 14.
    Rafipour, R., Kashanian, S., Hashemi, S., Omidfar, K., and Ezzati Nazhad Dolatabadi, J., Apoferritin-templated biosynthesis of manganese nanoparticles and investigation of direct electron transfer of MnNPs-HsAFr at modified glassy carbon electrode, Biotechnol. Appl. Biochem., 2017, vol. 64, no. 1, p. 110.CrossRefGoogle Scholar
  15. 15.
    Munro, H.N. and Linder, M.C., Ferritin: structure, biosynthesis, and role in iron metabolism, Physiol. Rev., 1978, vol. 58, no. 2, p. 317.CrossRefGoogle Scholar
  16. 16.
    Theil, E.C., Behera, R.K., and Tosha, T., Ferritins for chemistry and for life, Coord. Chem. Rev., 2013, vol. 257, no. 2, p. 579.CrossRefGoogle Scholar
  17. 17.
    Andrews, S.C., Harrison, P.M., Yewdall, S.J., Arosio, P., Levi, S., Bottke, W., von Darl, M., Briat, J.-F., Laulhère, J.-P., and Lobreaux, S., Structure, function, and evolution of ferritins, J. Inorg. Biochem., 1992, vol. 47, no. 1, p. 161.CrossRefGoogle Scholar
  18. 18.
    Uchida, M., Kang, S., Reichhardt, C., Harlen, K., and Douglas, T., The ferritin superfamily: supramolecular templates for materials synthesis, Biochim. Biophys. Acta, 2010, vol. 1800, no. 8, p. 834.CrossRefGoogle Scholar
  19. 19.
    Yoshimura, H., Protein-assisted nanoparticle synthesis, Colloids Surf. A, 2006, vol. 282, p. 464.CrossRefGoogle Scholar
  20. 20.
    Zhu, C., Yang, G., Li, H., Du, D., and Lin, Y., Electrochemical sensors and biosensors based on nanomaterials and nanostructures, Anal. Chem., 2014, vol. 87, no. 1, p. 230.CrossRefGoogle Scholar
  21. 21.
    Xu, Z., Chen, X., and Dong, S., Electrochemical biosensors based on advanced bioimmobilization matrices, Trends. Anal. Chem., 2006, vol. 25, no. 9, p. 899.CrossRefGoogle Scholar
  22. 22.
    Domard, A. and Domard, M., Chitosan: structure-properties relationship and biomedical applications, Polym. Biomater., 2001, vol. 2, p. 187.Google Scholar
  23. 23.
    Ali, A. and Ahmed, S., A review on chitosan and its nanocomposites in drug delivery, Int. J. Biol. Macromol., 2018, vol. 109, p. 273.CrossRefGoogle Scholar
  24. 24.
    Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., and Hebard, A.F., Transparent, conductive carbon nanotube films, Science, 2004, vol. 305, no. 5688, p. 1273.CrossRefGoogle Scholar
  25. 25.
    Goyal, R.N., Gupta, V.K., and Bachheti, N., Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone – an anabolic steroid used in doping, Anal. Chim. Acta, 2007, vol. 597, no. 1, p. 82.CrossRefGoogle Scholar
  26. 26.
    Wang, S.-F., Xie, F., and Hu, R.-F., Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen, Sens. Actuat. B: Chem., 2007, vol. 123, no. 1, p. 495.CrossRefGoogle Scholar
  27. 27.
    Park, C.W., Park, H.J., Kim, J.H., Won, K., and Yoon, H.H., Immobilization and charcteriazation of ferritin on gold electrode, Ultramicroscopy, 2009, vol. 109, no. 8, p. 1001.CrossRefGoogle Scholar
  28. 28.
    Salimi, A., Sharifi, E., Noorbakhsh, A., and Soltanian, S., Electrochem. Commun., 2006, vol. 8, no. 9, pp. 1499–1508.CrossRefGoogle Scholar
  29. 29.
    Karim-Nezhad, G., Pashazadeh, S., and Pashazadeh, A., Ni/Al LDH nanoparticles modified carbon paste electrode: application to electro-catalytic oxidation of methanol, Anal. Bioanal. Electrochem., 2012, vol. 4, p. 399.Google Scholar
  30. 30.
    Li, X., Niu, X., Zhao, W., Chen, W., Yin, C., Men, Y., Li, G., and Sun, W., Black phosphorene and PEDOT: PSS-modified electrode for electrochemistry of hemoglobin, Electrochem. Commun., 2018, vol. 86, p. 68.CrossRefGoogle Scholar
  31. 31.
    Fotouhi, L., Fatollahzadeh, M., and Heravi, M.M., Electrochemical behavior and voltammetric determination of sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube, Int. J. Electrochem. Sci., 2012, vol. 7, p. 3919.Google Scholar
  32. 32.
    Hong, J., Zhao, Y.-X., Xiao, B.-L., Moosavi-Movahedi, A.A., Ghourchian, H., and Sheibani, N., Direct electrochemistry of hemoglobin immobilized on a functionalized multi-walled carbon nanotubes and gold nanoparticles nanocomplex-modified glassy carbon electrode, Sensors, 2013, vol. 13, no. 7, p. 8595.CrossRefGoogle Scholar
  33. 33.
    Yin, Y., Lü, Y., Wu, P., and Cai, C., Direct electrochemistry of redox proteins and enzymes promoted by carbon nanotubes, Sensors, 2005, vol. 5, no. 4, p. 220.CrossRefGoogle Scholar
  34. 34.
    Bard, A.J., Faulkner, L.R., Leddy, J., and Zoski, C.G., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 1980.Google Scholar
  35. 35.
    Ngamchuea, K., Eloul, S., Tschulik, K., and Compton, R.G., Planar diffusion to macro disc electrodes-what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively?, J. Solid. State. Electrochem., 2014, vol. 18, no. 12, p. 3251.CrossRefGoogle Scholar
  36. 36.
    Antink, W.H., Choi, Y., Seong, K.-d., and Piao, Y., Simple synthesis of CuO/Ag nanocomposite electrode using precursor ink for non-enzymatic electrochemical hydrogen peroxide sensing, Sens. Actuat. B: Chem., 2018, vol. 255, p. 1995.CrossRefGoogle Scholar
  37. 37.
    Wu, Y., Wang, F., Lu, K., Lv, M., and Zhao, Y., Self-assembled dipeptide-graphene nanostructures onto an electrode surface for highly sensitive amperometric hydrogen peroxide biosensors, Sens. Actuat. B: Chem., 2017, vol. 244, p. 1022.CrossRefGoogle Scholar
  38. 38.
    Suarez, G., Santschi, C., Martin, O.J., and Slaveykova, V.I., Biosensor based on chemically-designed anchorable cytochrome c for the detection of H2O2 released by aquaticells, Biosens. Bioelectron., 2013, vol. 42, p. 385.CrossRefGoogle Scholar
  39. 39.
    Zhang, P., Guo, D., and Li, Q., Maganese oxide ultrathin nanosheets sensors for non-enzymatic detection of H2O2, Mater. Lett., 2014, vol. 125, p. 202.CrossRefGoogle Scholar
  40. 40.
    Karimi, A., Husain, S., Hosseini, M., Azar, P.A., and Ganjali, M., Rapid and sensitive detection of hydrogen peroxide in milk by enzyme-free eelctrochemiluminesence sensor based on a polypyrrole-cerium oxide nanocomposite, Sens. Actuat. B: Chem., 2018, vol. 271, p. 90.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Kermanshah Branch, Islamic Azad UniversityKermanshahIran
  2. 2.Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) and Nanoscience and Nanotechnology Research Center (NNRC), Razi UniversityKermanshahIran
  3. 3.Nano Drug Delivery Research Center, Kermanshah University of Medical SciencesKermanshahIran

Personalised recommendations