Advertisement

Russian Journal of Electrochemistry

, Volume 55, Issue 10, pp 925–932 | Cite as

Electrocatalytic Efficiency of PbO2 in Water Decontamination

  • F. SmailiEmail author
  • A. Benchettara
Article
  • 22 Downloads

Abstract

In this work, the electrodeposition of lead dioxide on a Pb electrode was realized by a potentiostatic method in 0.5 mol/L sulfuric acid solution at 1.3 V (ECS) during 30 min. The result of XRD showed that the crystal structure of PbO2 in acid solution is pure β-PbO2. The electrodegradation of tris (4-(dimethylamino) phenyl) methylium chloride (methyl violet 10B) dye in an aqueous solution of 0.1 mol/L sodium sulfate has been studied by potentiostatic method using β-PbO2 as anode. The methyl violet 10B was successfully oxidized by hydroxyl radicals electrogenerated from oxidation of water on the Pb/β-PbO2 electrode surface. The anodic oxidation of methyl violet 10B followed the pseudo-first order kinetics. The time and applied potential had significant effect on the electrochemical degradation of methyl violet 10B at the Pb/β-PbO2 electrode with a degradation rate of 10.5 g/(m2 day).

Keywords:

Pb/PbO2 electrode electrochemical oxidation methyl violet 10B decontamination 

Notes

ACKNOWLEDGMENTS

The author would like to thank Dr B. Bellal of laboratory of Storage and Valorization of Renewable Energies, Faculty of the Chemistry, U.S.T.H.B for his assistance in the UV–Visible spectroscopic analysis of the solutions before and after the degradation of the dye.

AUTHOR CONTRIBUTIONS

All authors made substantial contributions to conception and design, analysis, and interpretation of data, and edited the manuscript and approved the final version.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

FUNDING

The work was supported financially by the National Committee for Evaluation and Programmation of University Research (CNEPRU).

COMPLIANCE WITH STANDARDS OF RESEARCH INVOLVING ANIMALS

This article does not contain any studies involving animals performed by any of the authors.

COMPLIANCE WITH STANDARDS OF RESEARCH INVOLVING HUMANS AS SUBJECTS

This article does not contain any studies with human participants performed by any of the authors.

REFERENCES

  1. 1.
    Rajeev, K. and Rais, A., Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW), Desalination, 2011, vol. 265, p. 112.CrossRefGoogle Scholar
  2. 2.
    Panizza, M. and Cerisola, G., Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 2009, vol. 109, p. 6541.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Scialdone, O., Randazzo, S., Galia, A., and Silvestri, G., Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl, Water Res., 2009, vol. 43, p. 2260.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Aquino, J.M., Irikura, K., Rocha-Filho, R.C., Bocchi, N., and Biaggio, S.R., A comparison of electrodeposited Ti/β-PbO2 and Ti–Pt/β-PbO2 anodes in the electrochemical degradation of the direct yellow 86 dye, Quim. Nova., 2010, vol. 33, p. 2124.CrossRefGoogle Scholar
  5. 5.
    Cavalcanti, E.B., Garcia-Segura, S., Centellas, F., and Brillas, E., Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: degradation kinetics and oxidation products, Water Res., 2013, vol. 47, p. 1803.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Jager, D., Kupka, D., Vaclavikova, M., Ivanicova, L., and Gallios, G., Degradation of reactive black 5 by electrochemical oxidation, Chemosphere, 2017, vol. 120, p. 405.Google Scholar
  7. 7.
    Singh, S., Lien Lo, S., Srivastava, V.C., and Hiwar-kar, A.D., Comparative study of electrochemical oxidation for dye degradation: parametric optimization and mechanism identification, J. Environ. Chem. Eng., 2016, vol. 4, p. 2911.CrossRefGoogle Scholar
  8. 8.
    Bassuoni, D.G., Hamad, H.A., El-Ashtoukhy, E-S.Z., Amin, N.K., and Abd El-Latif, M.M., Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium, J. Hazard. Mater., 2017, vol. 335, p. 178.CrossRefGoogle Scholar
  9. 9.
    Dusan Z, M., Milka L, A. I., Antonije E, O., and Branimir N, G., Decolorization of textile dye CI Basic Yellow 28 with electrochemically generated active chlorine, Chem. Eng. J., 2012, vol. 206, p. 151.Google Scholar
  10. 10.
    Sasidharan Pillai, I.M. and Gupta, A.K., Potentiostatic electrodeposition of a novel cost effective PbO2 electrode: degradation study with emphasis on current efficiency and energy consumption, J. Electroanal. Chem., 2015, vol. 749, p. 16.CrossRefGoogle Scholar
  11. 11.
    Oliveira, F.H., Osugi, M.E., Paschoal, F.M.M., Profeti, D., Olivi, P., and Zanoni, M.V.B., Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1 – x)IrxO2 electrodes, Appl. Electrochem., 2007, vol. 37, p. 583.CrossRefGoogle Scholar
  12. 12.
    Chen, Y., Hong, L., Xue, H., Han, W., Wang, L., Sun, X., and Li, J., Preparation and characterization of TiO2–NTs/SnO2–Sb electrodes by electrodeposition, J. Electroanal. Chem., 2010, vol. 648, p. 119.CrossRefGoogle Scholar
  13. 13.
    Ciriaco, L., Santos, D., Pacheco, M.J., and Lopes, A., Anodic oxidation of organic pollutants on a Ti/SnO2–Sb2O4 anode, Appl. Electrochem., 2011, vol. 41, p. 577.CrossRefGoogle Scholar
  14. 14.
    Chen, Y., Ni, Q., Han, W., Wang, L., Kirk, D.W., and Thorpe, S.J., Electroless deposition of SnOx–Sb nanocoating in ordered titania pores for enhancing electrical conductivity, Scr. Mater., 2011, vol. 65, p. 986.CrossRefGoogle Scholar
  15. 15.
    Chen, X. and Chen, G., Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution, Electrochim. Acta, 2005, vol. 50, p. 4155CrossRefGoogle Scholar
  16. 16.
    Tolba, R., Tian, M., Wen, J., Jiang, Z., and Chen, A., Electrochemical oxidation of lignin at IrO2- based oxide electrodes, J. Electroanal. Chem., 2010, vol. 649, p. 9.CrossRefGoogle Scholar
  17. 17.
    Regisser, F., Lavoie, M., Champagne, G.Y., and Belanger, D., Randomly oriented graphite electrode. Part 1. Effect of electrochemical pretreatment on the electrochemical behavior and chemical composition of the electrode, J. Electroanal. Chem., 1996, vol. 415, p. 47.CrossRefGoogle Scholar
  18. 18.
    Oturan, N., Hamza, M., Ammar, S., Abdelhedi,R., and Oturan, M.A., Oxidation/mineralization of 2-nitrophenol in aqueous medium by electrochemical advanced oxidation processes using Pt/carbon-felt and BDD/carbon-felt cells, J. Electroanal. Chem., 2011, vol. 661, p. 66.CrossRefGoogle Scholar
  19. 19.
    Santos, E.V., Sáez, C., Martínez-Huitle, C.A., Cañizares, P., and Rodrigo, M.A., The role of particle size on the conductive diamond electrochemical oxidation of soil-washing effluent polluted with atrazine, Electrochem. Commun., 2015, vol. 55, p. 26.CrossRefGoogle Scholar
  20. 20.
    Araújo, D.M., Sáez, C., Martínez-Huitle, C.A., Cañizares, P., and Rodrigo, M.A., Influence of mediated processes on the removal of Rhodamine with conductive-diamond electrochemical oxidation, Appl. Catal., B: Environ., 2015, vol. 166, p. 454.CrossRefGoogle Scholar
  21. 21.
    Garcia-Segura, S., Vieira dos Santos, E., and Martínez-Huitle, C.A., Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review, Electrochem. Commun., 2015, vol. 59, p. 52.CrossRefGoogle Scholar
  22. 22.
    Chianca de Mouraa, D., Antonio Quirozb, M., Ribeiro da Silvaa, D., Salazarc, R., and Martínez-Huitlea, C.A., Electrochemical degradation of Acid Blue dye using TiO2-nanotubes decorated with PbO2 as anode, Nanotechnol. Monit. Manage, 2016, vol. 5, p. 13.Google Scholar
  23. 23.
    Awad, H.S. and Galwa, N.A., Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors, Chemosphere, 2005, vol. 61, p. 1327.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Devilliers, D., Dinh-Thi, M.T., Mahe, E., and Xuan, Q.L., Cr(III) oxidation with lead dioxide-based anodes, Electrochim. Acta, 2003,vol. 48, p. 4301.CrossRefGoogle Scholar
  25. 25.
    Sirés, I., Brillas, E., Cerisola, G., and Panizza, M., Comparative depollution of mecopropaqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes, Electroanal. Chem., 2008, vol. 38, p. 923.Google Scholar
  26. 26.
    Li, X., Yang, W., Chen, X., Li, W., Luo, B., and Wang, K., Preparation of 3D PbO2 nanospheres SnO2 nanowires/Ti electrode and its application in methyl orange degradation, Electrochim. Acta, 2014, vol. 146, p. 15.CrossRefGoogle Scholar
  27. 27.
    Panizza, M. and Cerisola, G., Influence of anode material on the electrochemical oxidation of 2-naphthol: part 2. Bulk electrolysis experiments, Electrochim. Acta, 2004, vol. 49, p. 3221.CrossRefGoogle Scholar
  28. 28.
    Polcaro, A.M., Palmas, S., Renoldi, F., and Mascia, M., On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment, Appl. Electrochem., 1999, vol. 29, p. 147.CrossRefGoogle Scholar
  29. 29.
    Quiroz, M.A., Reyna, S., Martinez-Huitle, C.A., Ferro, S., and De Battisti, A., Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes, Appl. Catal. B, 2005, vol. 59, p. 259.CrossRefGoogle Scholar
  30. 30.
    Chakraborty, S., Chowdhury, S., and Das Saha, P., Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk, Carbohydr. Polym., 2011, vol. 86, p. 1533.CrossRefGoogle Scholar
  31. 31.
    Mittal, A., Malviya, J., and Kaur, A.D., and Gupta, V.K., Adsorption of hazardous dye crystal violet from wastewater by waste materials, Colloid Interface Sci., 2010, vol. 343, p. 463.CrossRefGoogle Scholar
  32. 32.
    Rais, A., Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder, Hazard. Mater., 2009, vol. 171, p. 767.CrossRefGoogle Scholar
  33. 33.
    Silva Ferreira, B.C., Teodoro, F.S., Mageste, A.B., Gil, L.F., Pereira de Freitas, R., and Gurgel, L.V.A., Application of a new carboxylate-functionalized sugarcane bagasse for adsorptive removal of crystal violet from aqueous solution: kinetic, equilibrium and thermodynamic studies, Ind. Crops. Prod., 2015, vol. 65, p. 521.CrossRefGoogle Scholar
  34. 34.
    Zhou, D. and Gao, L., Effect of electrochemical preparation methods on structure and properties of PbO2 anodic layer, Electrochim. Acta, 2007, vol. 53, p. 2060.CrossRefGoogle Scholar
  35. 35.
    Velichenko, A.B. and Devilliers, D., Electrodeposition of fluorine-doped lead dioxide, J. Fluorine, Chem., 2007, vol. 128, p. 269.CrossRefGoogle Scholar
  36. 36.
    Hongyi, L., Yong, C., Yaohui, Z., Weiqing, H., Xiuyun, S., Jiansheng, L., and Lianjun, W., Preparation of Ti/PbO2–Sn anodes for electrochemical degradation of phenol, J. Electroanal. Chem., 2013, vol. 689, p. 193.CrossRefGoogle Scholar
  37. 37.
    Yu, N. and Gao, L., Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor, Electrochim. Commun., 2009, vol. 11, p. 220.CrossRefGoogle Scholar
  38. 38.
    Bingqian, D., Zhen, C., Qiang, Y., Wei, Z., Wen, Y., and Zhongcheng, G., Effect of temperature on the residual stress of a β-PbO2 coating, Surf. Eng., 2017, vol. 34, p. 689.Google Scholar
  39. 39.
    Hao, X., Dan, S., Qian, Z., Honghui, Y., and Yan, W., Preparation and characterization of PbO2 electrodes from electro-deposition solutions with different copper concentration, RSC Adv., 2014, vol. 4, p. 25011.CrossRefGoogle Scholar
  40. 40.
    Brillas, E., Sirés, I., and Oturan, M.A., Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 2009, vol. 109, p. 6570.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Johra, F.T. and Jung, W.G., RGO–TiO2–ZnO composites: synthesis, characterization, and application to photocatalysis, Appl. Catal. A, 2015, vol. 491, p. 52.CrossRefGoogle Scholar
  42. 42.
    Rodriguez, J., Rodrigo, M. A., Panizza, M., and Cerisola, G., Electrochemical oxidation of Acid Yellow 1 using diamond anode, J. Appl Electrochem., 2009, vol. 39, p. 2285.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, (USTHB) BP 32AlgiersAlgeria

Personalised recommendations