Russian Journal of Electrochemistry

, Volume 55, Issue 10, pp 1021–1030 | Cite as

Nanostructured Platinum Catalyst Supported by Titanium Dioxide

  • V. A. VolochaevEmail author
  • I. N. NovomlinskiiEmail author
  • E. M. Bayan
  • V. E. Guterman


One of important problems associated with the use of Pt/C electrocatalysts in low-temperature fuel cells is their degradation due to oxidation of the carbon support. The use of noncarbon supports resistant to oxidation, for example, oxides of certain metals in the highest degree of oxidation is a promising direction. TiO2 with the high specific surface area (104 m2/g) is synthesized and used in fabrication of supported platinum catalysts. For Pt/TiO2 and carbon-containing composite Pt/TiO2+C, the electrochemically active surface area of platinum and the their activity in oxygen electroreduction reaction are estimated. The assessed stability of synthesized materials far exceeds the stability of commercial Pt/C catalysts.


titanium(IV) oxide platinum nanoparticles electrocatalyst oxygen electroreduction reaction noncarbon support 



We are grateful to A.Yu. Nikulin for his help with XRD measurements, V.A. Butova (International Research Center “Smart Materials” of the Southern Federal University) for carrying out the BET experiments, S.V. Belenov and N.M. Novikovskii (Research Institute of Physics, Southern Federal University) for their help in carrying out X-ray fluorescence analysis, and also to the Center of Collective Use “Modern Microscopy” at the Southern Federal University for the possibility of studying the microstructure of our samples.


This study was supported by the Russian Scientific Foundation (RSF), grant no. 16-19-10115.


The authors state the absence of any conflict of interests.


  1. 1.
    Kuzov, A.V., Tarasevich, M.R., and Bogdanovskaya, V.A., Catalysts of ethanol anodic oxidation for ethanol-air fuel cell with a proton-conducting polymer electrolyte, Russ. J. Electrochem., 2010, vol. 46, no. 4, p. 422.CrossRefGoogle Scholar
  2. 2.
    Sharaf, O.Z. and Orhan, M.F., An overview of fuel cell technology: Fundamentals and applications, Renewable Sustainable Energy Rev., 2014, vol. 32, p. 810.CrossRefGoogle Scholar
  3. 3.
    Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, no. 3, p. 191.CrossRefGoogle Scholar
  4. 4.
    Antolini, E., Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance, Appl. Catal., B, 2016, vol. 181, p. 298.CrossRefGoogle Scholar
  5. 5.
    Antolini, E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal., B, 2009, vol. 88, nos. 1–2, p. 1.CrossRefGoogle Scholar
  6. 6.
    Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G.F., Ross, P.N., Lucas, C.A., and Markovic, N.M., Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science, 2007, vol. 315, no. 5811, p. 493.CrossRefGoogle Scholar
  7. 7.
    Stamenkovic, V. R., Mun, B.S., Arenz, M., Mayrho-fer, K.J.J., Lucas, C.A., Wang, G.F., Ross, P.N., and Markovic, N.M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater., 2007, vol. 6, no. 3, p. 241.CrossRefGoogle Scholar
  8. 8.
    Stamenkovic, V., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., Rossmeisl, J., Greeley, J., and Norskov, J.K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure, Angew. Chem., Int. Ed., 2006, vol. 45, no. 18, p. 2897.CrossRefGoogle Scholar
  9. 9.
    Oezaslan, M., Hasche, F., and Strasser, P., Pt-Based core-shell catalyst architectures for oxygen fuel cell electrodes, J. Phys. Chem. Lett., 2013, vol. 4, no. 19, p. 3273.CrossRefGoogle Scholar
  10. 10.
    Chen, A. and Holt-Hindle, P., Platinum-based nanostructured materials: Synthesis, properties, and applications, Chem. Rev., 2010, vol. 110, no. 6, p. 3767.CrossRefGoogle Scholar
  11. 11.
    Ferreira, P.J., la O, G.J., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S., and Gasteiger, H.A., Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – A mechanistic investigation, J. Electrochem. Soc., 2005, vol. 152, no. 11, p. A2256.CrossRefGoogle Scholar
  12. 12.
    Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., et al., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, no. 10, p. 3904.CrossRefGoogle Scholar
  13. 13.
    Shao, Y.Y., Yin, G.P., and Gao, Y.Z., Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources., 2007, vol. 171, no. 2, p. 558.CrossRefGoogle Scholar
  14. 14.
    Hodnik, N., Dehm, G., and Mayrhofer, K.J.J., Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research, Acc. Chem. Res., 2016, vol. 49, no. 9, p. 2015.CrossRefGoogle Scholar
  15. 15.
    Kuzov, A.V., Tarasevich, M.R., Bogdanovskaya, V.A., Modestov, A.D., Tripachev, O.V., and Korchagin, O.V., Degradation processes in hydrogen-air fuel cell as a function of the operating conditions and composition of membrane-electrode assemblies, Russ. J. Electrochem., 2016, vol. 52, no. 7, p. 705.CrossRefGoogle Scholar
  16. 16.
    Venkatesan, S.V., Dutta, M., and Kjeang, E., Mesoscopic degradation effects of voltage cycled cathode catalyst layers in polymer electrolyte fuel cells, Electrochem. Commun., 2016, vol. 72, p. 15.CrossRefGoogle Scholar
  17. 17.
    Sharma, S. and Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts—A review, J. Power Sources., 2012, vol. 208, p. 96.CrossRefGoogle Scholar
  18. 18.
    Bogdanovskaya, V.A., Kol’tsova, E.M., Tarasevich, M.R., Radina, M.V., Zhutaeva, G.V., Kuzov, A.V., and Gavrilova, N.N., Highly active and stable catalysts based on nanotubes and modified platinum for fuel cells, Russ. J. Electrochem., 2016, vol. 52, no. 8, p. 723.CrossRefGoogle Scholar
  19. 19.
    Wang, L., Chen, J., Rudolph, V., and Zhu, Z., Nanotubules-supported Ru nanoparticles for preferential CO oxidation in H2-rich stream, Adv. Powder Technol., 2012, vol. 23, no. 4, p. 465.CrossRefGoogle Scholar
  20. 20.
    Balakhonov, S. V., Vatsadze, S. Z., and Churagulov, B.R., Effect of supercritical drying parameters on the phase composition and morphology of aerogels based on vanadium oxide, Russ. J. Inorg. Chem., 2015, vol. 60, no. 1, p. 9.CrossRefGoogle Scholar
  21. 21.
    Ogi, T., Nandiyanto, A.B.D., and Okuyama, K., Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications, Adv. Powder Technol., 2014, vol. 25, no. 1, p. 3.CrossRefGoogle Scholar
  22. 22.
    Elezovic, N.R., Radmilovic, V.R., and Krstajic, N.V., Platinum nanocatalysts on metal oxide-based supports for low temperature fuel cell applications, RSC Adv., 2016, vol. 6, p. 6788.CrossRefGoogle Scholar
  23. 23.
    Frolova, L.A. and Dobrovolsky, Y.A., Platinum electrocatalysts based on oxide supports for hydrogen and methanol fuel cells, Russ. Chem. Bulletin., 2011, vol. 60, no. 6, p. 1101.CrossRefGoogle Scholar
  24. 24.
    Huang, S.-Y., Ganesan, P., and Popov, B.N., Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell, Appl. Catal., B, 2011, vol. 102, p. 71.CrossRefGoogle Scholar
  25. 25.
    Behafarid, F. and Cuenya, B.R., Coarsening phenomena of metal nanoparticles and the influence of the support pre-treatment: Pt/TiO2(110), Surface Science, 2012, vol. 606, p. 908.CrossRefGoogle Scholar
  26. 26.
    Akalework, N.G., Pan, C.-J., Su, W.-N., Rick, J., Tsai, M.-C., Lee, J.-F., Lin, J.-M., Tsai, L.-D., and Hwang, B.-J., Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs, J. Mater. Chem., 2012, vol. 22, p. 20977.CrossRefGoogle Scholar
  27. 27.
    Esfahani, R.A.M., Videla, A., Vankova, S., and Specchia, S., Stable and methanol tolerant Pt/TiOx-C electrocatalysts for the oxygen reduction reaction, Int. J. Hydrogen Energy, 2015, vol. 40, p. 14529.CrossRefGoogle Scholar
  28. 28.
    Ando, F., Tanabe, T., Gunji, T., Tsuda, T., Kaneko, S., Takeda, T., Ohsaka, T., and Matsumoto, F., Improvement of ORR activity and durability of Pt electrocatalyst nanoparticles anchored on TiO2/cup-stacked carbon nanotube in acidic aqueous media, Electrochim. Acta, 2017, vol. 232, p. 404.CrossRefGoogle Scholar
  29. 29.
    Anwar, M.T., Yan, X., Shen, S., Husnain, N., Zhu, F., Luo, L., and Zhang, J., Enhanced durability of Pt electrocatalyst with tantalum doped titania as catalyst support, Int. J. Hydrogen Energy, 2017, vol. 42, p. 30750.CrossRefGoogle Scholar
  30. 30.
    Bo, Z., Ahn, S., Ardagh, M.A., Schweitzer, N.M., Canlas, C.P., Farha, O.K., and Notestein, J.M., Synthesis and stabilization of small Pt nanoparticles on TiO2 partially masked by SiO2, Appl. Catal., A, 2018, vol. 551, p. 122.Google Scholar
  31. 31.
    Dhanasekaran, P., Selvaganesh, S.V., Sarathi, L., and Bhat, S.D., Rutile TiO2 supported Pt as stable electrocatalyst for improved oxygen reduction reaction and durability in polymer electrolyte fuel cells, Electrocatalysis, 2016, vol. 7, p. 495.CrossRefGoogle Scholar
  32. 32.
    Kuriganova, A.B., Leontyev, I.N., Alexandrin, A.S., Maslova, O.A., Rakhmatullin, A.I., and Smirnova, N.V., Electrochemically synthesized Pt/TiO2-C catalysts for direct methanol fuel cell applications, Mendeleev Commun., 2017, vol. 27, p. 67.CrossRefGoogle Scholar
  33. 33.
    Mirshekari, G.R. and Rice, C.A., Effects of support particle size and Pt content on catalytic activity and durability of Pt/TiO2 catalyst for oxygen reduction reaction in proton exchange membrane fuel cells environment, J. Power Sources, 2018, vol. 396, p. 606.CrossRefGoogle Scholar
  34. 34.
    Wang, J., Xu, M., Zhao, J., Fang, H., Huang, Q., Xiao, W., Li, T., and Wang, D., Anchoring ultrafine Pt electrocatalysts on TiO2-C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction, Appl. Catalysis, B, 2018, vol. 327, p. 228.Google Scholar
  35. 35.
    Bayan, E.M., Lupeiko, T.G., Pustovaya, L.E., and Fedorenko, A.G., Hydrothermal teo-step synthesis of titanate nanotubes, Springer Proc. Phys., 2016, vol. 175, p. 51.CrossRefGoogle Scholar
  36. 36.
    Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Y., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts, Nanotechnologies Russ., 2016, vol. 11, no. 5, p. 287.CrossRefGoogle Scholar
  37. 37.
    Brunauer, S., Emmett, P.H., and Teller, E., Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 1938, vol. 60, no. 2, p. 309.CrossRefGoogle Scholar
  38. 38.
    Alekseenko, A., Ashihina, E., Shpanko, S, Volochaev, V., Safronenko, O., and Guterman, V., Application of CO atmosphere in the liquid phase synthesis as a universal way to control the microstructure and electrochemical performance of Pt/C electrocatalysts, Appl. Catal., B, 2018, vol. 226, p. 608.CrossRefGoogle Scholar
  39. 39.
    Mayrhofer, K.J.J., Blizanac, B.B., Arenz, M., Stamenkovic, V.R., Ross, P.N., and Markovic, N.M., The impact of geometric and surface electronic properties of Pt-catalysts on the particle size in electrocatalysis, J. Phys. Chem., B., 2005, vol. 109, p. 14433.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations