Advertisement

Russian Journal of Electrochemistry

, Volume 55, Issue 10, pp 978–988 | Cite as

On the Possibility of Determination of Thermodynamic Functions of the Li–S Electrochemical System Using the EMF Method

  • E. V. Kuz’minaEmail author
  • E. V. Karaseva
  • N. V. Chudova
  • A. A. Mel’nikova
  • V. S. KolosnitsynEmail author
Article
  • 18 Downloads

Abstract

This work assesses the applicability of the EMF method for determination of the values of thermodynamic functions for the Li–S electrochemical system in lithium–sulfur cells with various states of charge. It is shown that the EMF method can be used for determination of the values of thermodynamic functions for the Li–S electrochemical systems in lithium–sulfur cells with various states of discharge only in the first charge–discharge cycle. The EMF method is inapplicable in the following charge–discharge cycles owing to disturbance of equilibrium in the electrochemical system due to the direct chemical interaction between sulfur and high-order polysulfides of lithium (Li2Sn, n > 4) and the metallic lithium electrode. The thermodynamic functions of the Li–S system with different sulfur reduction degree are in the following ranges: ΔG = –480…–410 kJ/mol; ΔH = –490…–420 kJ/mol; ΔS = –120…–20 J/(mol K) at the temperature of 303 K. Quantum–chemical calculations of the values of thermodynamic functions are carried out for electrochemical reduction of sulfur and lithium polysulfides. The calculated values of thermodynamic functions agree reasonably with the measured values. The thermodynamic efficiency of energy conversion is estimated for discharge of lithium–sulfur cells at 30°C; it is 93–98%.

Keywords:

lithium–sulfur cell thermodynamics lithium polysulfides entropy EMF method for determination of values of thermodynamic functions DFT studies quantum-chemical study 

Notes

ACKNOWLEDGMENTS

The authors are deeply grateful to the referee for attentive consideration of the manuscript and constructive comments.

AUTHOR CONTRIBUTIONS

The contributions of the authors are as follows: E.V. Kuz’mina (50%), E.V. Karaseva (10%), N.V. Chudova (5%), A.A. Mel’nikova (5%), V.S. Kolosnitsyn (30%).

FUNDING

The work was financially supported by State Assignment no. AAAA-A17-117011910031-7, by the Russian Foundation for Basic Research (project no. 16-29-06190), and by the Russian Scientific Foundation (project no. 17-73-20115).

Accomplishment of the State Assignment included estimation of applicability of the EMF method of determination of thermodynamic functions of the lithium–sulfur electrochemical system and studying the regularities of variation of the thermodynamic functions of the Li–S electrochemical system in the course of the discharge of the lithium–sulfur cells with the electrolyte system of 1 M LiClO4 in sulfolane.

The funding by the Russian foundation for Basic Research included measurements of the regularities of variation of thermodynamic functions of the Li–S electrochemical system in the course of discharge of the lithium–sulfur cells with the electrolyte system of 1 M LiCF3SO3 in sulfolane.

The funding by the Russian Scientific Foundation included quantum–chemical calculations of the thermodynamic functions of electrochemical reduction of sulfur.

COMPLIANCE WITH ETHICAL STANDARDS

This paper contains no studies with animals or people as research objects.

CONFLICT OF INTEREST

The authors state the absence of any conflict of interest.

REFERENCES

  1. 1.
    Han, K.S., Chen, J., Cao, R., Rajput, N.N., Murugesan, V., Shi, L., Pan, H., Zhang, J.G., Liu, J., Persson, K.A., and Mueller, K.T., Effects of anion mobility on electrochemical behaviors of lithium-sulfur batteries, Chem. Mater., 2017, vol. 29, p. 9023.  https://doi.org/10.1021/acs.chemmater.7b02105 CrossRefGoogle Scholar
  2. 2.
    Kolosnitsyn, V.S. and Karaseva, E.V., Lithium-sulfur batteries: problems and solutions, Russ. J. Electrochem., 2008, vol. 44, no. 5, p. 506.  https://doi.org/10.1134/S1023193508050029 CrossRefGoogle Scholar
  3. 3.
    Schipper, F. and Aurbach, D., A brief review: past, present and future of lithium ion batteries, Russ. J. Electrochem., 2016, vol. 52, no. 12, p. 1095.  https://doi.org/10.1134/S1023193516120120 CrossRefGoogle Scholar
  4. 4.
    Zheng, D., Wang, G., Liu, D., Si, J., Ding, T., Qu, D., Yang, X., and Qu, D., The progress of Li-S batteries – understanding of the sulfur redox mechanism: dissolved polysulfide ions in the electrolytes, Adv. Mater. Technol., 2018, vol. 3, no. 9, p. 1700233.  https://doi.org/10.1002/admt.201700233 CrossRefGoogle Scholar
  5. 5.
    Kolosnitsyn, V.S., Kuzmina, E.V., and Karaseva, E.V., On the reasons for low sulphur utilization in the lithium-sulphur batteries, J. Power Sources, 2015, vol. 274, p. 203.  https://doi.org/10.1016/j.jpowsour.2014.10.029 CrossRefGoogle Scholar
  6. 6.
    Chung, S.H., Chang, C.H., and Manthiram, A., Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable, Adv. Funct. Mater., 2018, vol. 28, no 1801188.  https://doi.org/10.1002/adfm.201801188 CrossRefGoogle Scholar
  7. 7.
    Zheng, D., Liu, D., Harris, J.B., Ding, T., Si, J., Andrew, S., Qu, D., Yang, X.Q., and Qu, D., Investigation of the Li-S battery mechanism by real-time monitoring of the changes of sulfur and polysulfide species during the discharge and charge, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 4326.  https://doi.org/10.1021/acsami.6b08904 CrossRefPubMedGoogle Scholar
  8. 8.
    Lukomskii, Yu.Ya. and Gamburg, Yu.D., Fiziko-khimicheskie osnovy elektrokhimii (Physicochemical Basics of Electrochemistry), Dolgoprudny: Publishing House “Intellect”, 2008.Google Scholar
  9. 9.
    Krause, L.J., Jensen, L.D., and Dahn, J.R., Measurement of parasitic reactions in Li ion cells by electrochemical calorimetry, J. Electrochem. Soc., 2012, vol. 159, no. 7, p. A937.  https://doi.org/10.1149/2.021207jes CrossRefGoogle Scholar
  10. 10.
    Wang, S., Entropy and heat generation of lithium cells/batteries, Chin. Phys. B., 2016, vol. 25, no. 1, p. 010509.  https://doi.org/10.1088/1674-1056/25/1/010509 CrossRefGoogle Scholar
  11. 11.
    Bernardi, D., Pawlikowski, E., and Newman, J., A general energy balance for battery systems, J. Electrochem. Soc., 1985, vol. 132, no. 1, p. 5.  https://doi.org/10.1149/1.211379 CrossRefGoogle Scholar
  12. 12.
    Thomas, K.E. and Newman, J., Thermal modeling of porous insertion electrodes, J. Electrochem. Soc., 2003, vol. 150, no. 2, p. A176.  https://doi.org/10.1149/1.1531194 CrossRefGoogle Scholar
  13. 13.
    Thomas, K.E., Bogatu, C., and Newman, J., Measurement of the entropy of reaction as a function of state of charge in doped and undoped lithium manganese oxide, J. Electrochem. Soc., 2001, vol. 148, no. 6, p. A570.  https://doi.org/10.1149/1.1369365 CrossRefGoogle Scholar
  14. 14.
    Giuliano, M.R., Advani, S.G., and Prasad, A.K., Thermal analysis and management of lithium-titanate batteries, J. Power Sources, 2011, vol. 196, no. 15, p. 6517.  https://doi.org/10.1016/j.jpowsour.2011.03.099 CrossRefGoogle Scholar
  15. 15.
    Zaghib, K., Guerfi, A., Hovington, P., Vijh, A., Trudeau, M., Mauger, A., Goodenough, J.B., and Julien, C.M., Review and analysis of nanostructured olivine-based lithium rechargeable batteries: Status and trends, J. Power Sources, 2013, vol. 232, p. 357.  https://doi.org/10.1016/j.jpowsour.2012.12.095 CrossRefGoogle Scholar
  16. 16.
    Delmas, C., Ménétrier, M., Crohuennec, L., Levasseur, S., Pérès, J.P., Pouillerie, C., Prado, G., Fournès, L., and Weill, F., Lithium batteries: a new tool in solid state chemistry, Int. J. Inorg. Mater., 1999, vol. 1, p. 11. https://doi.org/10.1016/S1463-0176(99)00003-4 CrossRefGoogle Scholar
  17. 17.
    Jalkanen, K., Aho, T., and Vuorilehto, K., Entropy change effects on the thermal behavior of a LiFePO4/graphite lithium-ion cell at different states of charge, J. Power Sources, 2013, vol. 243, p. 354.  https://doi.org/10.1016/j.jpowsour.2013.05.199 CrossRefGoogle Scholar
  18. 18.
    Kolosnitsyn, V.S., Ivanov, A.L., Karaseva, E.V., Kuz’mina, E.V., and Mochalov, S.E., Effect of lithium polysulfides on cycling performance of lithium electrodes in 1M solution of LiClO4 in sulfolane, Elektrokhim. Energ., 2013, vol. 13, no. 3, p. 144.Google Scholar
  19. 19.
    Kolosnitsyn, V.S., Kuzmina, E.V., and Mochalov, S.E., Determination of lithium sulphur batteries internal resistance by the pulsed method during galvanostatic cycling, J. Power Sources, 2014, vol. 252, p. 28.  https://doi.org/10.1016/j.jpowsour.2013.11.099 CrossRefGoogle Scholar
  20. 20.
    Mochalov, S.E., Antipin, A.V., Nurgaliev, A.R., and Kolosnitsyn, V.S., Multichannel potentiostat-galvanostat for cycling of batteries and electrochemical cells, Elektrokhim. Energ., 2015, vol. 15, no. 1, p. 45.Google Scholar
  21. 21.
    Gaussian 09, Revision C, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., Gaussian, Inc., Wallingford CT, 2016.Google Scholar
  22. 22.
    Ochterski, J.W., Thermochemistry in Gaussian Available at: http://gaussian.com/thermo/ (accessed 2 September 2018).Google Scholar
  23. 23.
    Dibden, J.W., Meddings, N., Owen, J.R., and Garcia-Araez, N, Quantitative Galvanostatic Intermittent Titration Technique for the Analysis of a Model System with Applications in Lithium−Sulfur Batteries, ChemElectroChem, 2018, vol. 5, no. 3, p. 445.  https://doi.org/10.1002/celc.201701004 CrossRefGoogle Scholar
  24. 24.
    Raccichini, R., Furness, L., Dibden, J.W., Owen, J.R., and Garc’ıa-Araez, N., Impedance Characterization of the Transport Properties of Electrolytes Contained within Porous Electrodes and Separators Useful for Li‒S Batteries, J. Electrochem. Soc., 2018, vol. 165, no. 11, p. A2741.  https://doi.org/10.1149/2.0631811jes CrossRefGoogle Scholar
  25. 25.
    Conder, J., Villevieille, C., Trabesinger, S., Novák, P., Gubler, L., and Bouchet, R. Electrochemical impedance spectroscopy of a Li–S battery: Part 1. Influence of the electrode and electrolyte compositions on the impedance of symmetric cells, Electrochim. Acta, 2017, vol. 244, p. 61.  https://doi.org/10.1016/j.electacta.2017.05.041 CrossRefGoogle Scholar
  26. 26.
    Canas, N.A., Hirose, K., Pascucci, B., Wagner, N., Friedrich, A., and Hiesge, R., Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy, Electrochim. Acta, 2013, vol. 97, no. 1, p. 42.  https://doi.org/10.1016/j.electacta.2013.02.101 CrossRefGoogle Scholar
  27. 27.
    Kolosnitsyn, V.S., Kuzmina, E.V., Karaseva, E.V., and Mochalov, S.E., A study of the electrochemical processes in lithium–sulphur cells by impedance spectroscopy, J. Power Sources, 2011, vol. 196, no. 3, p. 1478.  https://doi.org/10.1016/j.jpowsour.2010.08.105 CrossRefGoogle Scholar
  28. 28.
    Dominko, R., Patel, M.U.M., Lapornik, V., Vizintin, A., Kozelj, M., Tusar, N., Arcon, I., Stievano, L., and Aquilant, G., Analytical Detection of Polysulfides in the Presence of Adsorption Additives by Operando X-ray Absorption Spectroscopy, J. Phys. Chem. C, 2015, vol. 119, p. 19001.  https://doi.org/10.1021/acs.jpcc.5b05609 CrossRefGoogle Scholar
  29. 29.
    Barchasz, C., Molton, F., Duboc, F., Lepretre, J.C., Patoux, S., and Alloin, F., Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification, Anal. Chem., 2012, vol. 84, p. 39703.  https://doi.org/10.1021/ac2032244 CrossRefGoogle Scholar
  30. 30.
    Wujcik, K.H., Wang, D.R., Raghunathan, A., Drake, M., Pascal, T.A., Prendergast, D., and Balsara, N.P., Lithium Polysulfide Radical Anions in Ether-Based Solvents, J. Phys. Chem. C, 2016, vol. 120, p. 18403.  https://doi.org/10.1021/acs.jpcc.6b04264 CrossRefGoogle Scholar
  31. 31.
    Zou, Q. and Lu, Y.C., Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV–vis Spectroscopic Study, J. Phys. Chem Lett., 2016, vol. 7, no. 8, p. 1518.  https://doi.org/10.1021/acs.jpclett.6b00228 CrossRefPubMedGoogle Scholar
  32. 32.
    Wang, L., Zhang, T., Yang, S., Cheng, F., Liang, J., and Chen, J., A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries, J. Energy Chem., 2013, vol. 22, p. 72.CrossRefGoogle Scholar
  33. 33.
    Liu, Q., Mu, D., Wu, B., Wang, L., Gai, L., and Wu, F., Insight on lithium polysulfide intermediates in a Li/S battery by density functional theory, RSC Adv., 2017, vol. 7, p. 33373.  https://doi.org/10.1039/c7ra04673a CrossRefGoogle Scholar
  34. 34.
    Sim, E.S., Yi, G.S., Je, M., Lee, Y., and Chung, Y.-C., Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in Li–S batteries: A density functional theory study, J. Power Sources, 2017, vol. 342, p. 64.  https://doi.org/10.1016/j.jpowsour.2016.12.042 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Kuz’mina
    • 1
    Email author
  • E. V. Karaseva
    • 1
  • N. V. Chudova
    • 1
    • 2
  • A. A. Mel’nikova
    • 1
    • 2
  • V. S. Kolosnitsyn
    • 1
    • 2
    Email author
  1. 1.Ufa Institute of Chemistry—Subdivision of the Ufa Federal Research Centre of the Russian Academy of SciencesUfaRussia
  2. 2.Ufa State Petroleum Technological UniversityUfaRussia

Personalised recommendations