Advertisement

Russian Journal of Electrochemistry

, Volume 55, Issue 6, pp 517–523 | Cite as

Microstructural Influence on Electrochemical Properties of LiFePO4/C/Reduced Graphene Oxide Composite Cathode

  • G. KucinskisEmail author
  • G. BajarsEmail author
  • K. Bikova
  • K. Kaprans
  • J. Kleperis
Article
  • 31 Downloads

Abstract

LiFePO4/C/reduced graphene oxide (rGO) composites with different morphologies were synthesized, allowing evaluation of the electrochemical performance as a function of the sample morphology. LiFePO4 particles anchored on rGO sheets and rGO sheets wrapping LiFePO4 agglomerations were two of the most pronounced features observed. The structure with LiFePO4 particles anchored on rGO sheets was found to be the most optimal and give rise to both increased capacity and improved rate capability.

Keywords:

LiFePO4 graphene lithium ion batteries cathode morphology 

REFERENCES

  1. 1.
    Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B., Mater. Res. Bull., 1980, vol. 15, p. 783.CrossRefGoogle Scholar
  2. 2.
    Liu, Z., Yu, A., and Lee, J.Y., J. Power Sources, 1999, vols. 81–82, p. 416.CrossRefGoogle Scholar
  3. 3.
    Ohzuku, T. and Makimura, Y., Chem. Lett., 2001, vol. 30, p. 744.CrossRefGoogle Scholar
  4. 4.
    Thackeray, M.M., Kang, S.-H., Johnson, C.S., et al., J. Mater. Chem., 2007, vol. 17, p. 3112.CrossRefGoogle Scholar
  5. 5.
    Thackeray, M.M., Johnson, P.J., de Picciotto, L.A., et al., Mater. Res. Bull., 1984, vol. 19, p. 179.CrossRefGoogle Scholar
  6. 6.
    Ohzuku, T., Kitagawa, M., and Hirai, T., J. Electrochem. Soc., 1990, vol. 137, p. 769.CrossRefGoogle Scholar
  7. 7.
    Padhi, A.K., Nanjundaswarny, K., and Goodenough, J., J. Electrochem. Soc., 1997, vol. 144, p. 1188.CrossRefGoogle Scholar
  8. 8.
    Mekonnen, Y., Sundararajan, A., and Sarwat, A.I., Proc. IEEE SoutheastCon2016, Norfolk, VA, March 30–Apr. 3, 2016, pp. 1–6.Google Scholar
  9. 9.
    Park, M., Zhang, X., Chung, M., et al., J. Power Sources, 2010, vol. 195, p. 7904.CrossRefGoogle Scholar
  10. 10.
    Nishizawa, M., Koshika, H., Itoh, T., et al., Electrochem. Commun., 1999, vol. 1, p. 375.CrossRefGoogle Scholar
  11. 11.
    Zaghib, K., Shim, J., Guerfi, A., et al., Electrochem. Solid-State Lett., 2005, vol. 8, p. A207.CrossRefGoogle Scholar
  12. 12.
    Liu, D., Chen, L.-C., Liu, T.-J., et al., Adv. Chem. Eng. Sci., 2014, vol. 04, p. 515.CrossRefGoogle Scholar
  13. 13.
    Indrikova, M., Grunwald, S., Golks, F., et al., J. Electrochem. Soc., 2015, vol. 162, p. A2021.CrossRefGoogle Scholar
  14. 14.
    Zheng, H., Li, J., Song, X., et al., Electrochim. Acta, 2012, vol. 71, p. 258.CrossRefGoogle Scholar
  15. 15.
    Li, L., Wu, L., Wu, F., et al., J. Electrochem. Soc., 2017, vol. 164, p. A2138.CrossRefGoogle Scholar
  16. 16.
    Cao, Q., Zhang, H.P., Wang, G.J., et al., Electrochem. Commun., 2007, vol. 9, p. 1228.CrossRefGoogle Scholar
  17. 17.
    Zhang, H., Xu, Y., Zhao, C., et al., Electrochim. Acta, 2012, vol. 83, p. 341.CrossRefGoogle Scholar
  18. 18.
    Zhu, C., Mu, X., van Aken, P.A., et al., Angew. Chem. Int. Ed., 2014, vol. 53, p. 2152.CrossRefGoogle Scholar
  19. 19.
    Sun, X., Li, J., Shi, C., et al., J. Power Sources, 2012, vol. 220, p. 264.CrossRefGoogle Scholar
  20. 20.
    Liu, X.-M., Huang, Z.D., Oh, S.W., et al., Compos. Sci. Technol., 2012, vol. 72, p. 121.CrossRefGoogle Scholar
  21. 21.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., et al., Science, 2004, vol. 306, p. 666.CrossRefPubMedGoogle Scholar
  22. 22.
    Kucinskis, G., Bajars, G., and Kleperis, J., J. Power Sources, 2013, vol. 240, p. 66.CrossRefGoogle Scholar
  23. 23.
    Lerf, A., He, H., Forster, M., and Klinowski, J., J. Phys. Chem. B, 1998, vol. 102, p. 4477.CrossRefGoogle Scholar
  24. 24.
    He, H., Klinowski, J., Forster, M., and Lerf, A., Chem. Phys. Lett., 1998, vol. 287, p. 53.CrossRefGoogle Scholar
  25. 25.
    Zhou, X., Wang, F., Zhu, Y., and Liu, Z., J. Mater. Chem., 2011, vol. 21, p. 3353.CrossRefGoogle Scholar
  26. 26.
    Su, C., Bu, X., Xu, L., et al., Electrochim. Acta, 2012, vol. 64, p. 190.CrossRefGoogle Scholar
  27. 27.
    Yang, J., Wang, J., Wang, D., et al., J. Power Sources, 2012, vol. 208, p. 340.CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Wang, W., Li, P., et al., J. Power Sources, 2012, vol. 210, p. 47.CrossRefGoogle Scholar
  29. 29.
    Tang, Y., Huang, F., Bi, H., et al., J. Power Sources, 2012, vol. 203, p. 130.CrossRefGoogle Scholar
  30. 30.
    Xu, H., Chang, J., Sun, J., and Gao, L., Mater. Lett., 2012, vol. 83, p. 27.CrossRefGoogle Scholar
  31. 31.
    Wang, L., Wang, H., Liu, Z., et al., Solid State Ionics, 2010, vol. 181, p. 1685.CrossRefGoogle Scholar
  32. 32.
    Ding, Y., Jiang, Y., Xu, F., et al., Electrochem. Commun., 2010, vol. 12, p. 10.CrossRefGoogle Scholar
  33. 33.
    Wang, Y., Feng, Z.-S., Chen, J.-J., and Zhang, C., Mater. Lett., 2012, vol. 71, p. 54.CrossRefGoogle Scholar
  34. 34.
    Toprakci, O., Toprakci, H.A.K., Ji, L., et al., J. Renew. Sustain. Energy, 2012, vol. 4, p. 013121.CrossRefGoogle Scholar
  35. 35.
    Su, F.-Y., You, C., He, Y.-B., et al., J. Mater. Chem., 2010, vol. 20, p. 9644.CrossRefGoogle Scholar
  36. 36.
    Wang, H., Yang, Y., Liang, Y., et al., Angew. Chem. Int. Ed. Engl., 2011, vol. 50, p. 7364.CrossRefPubMedGoogle Scholar
  37. 37.
    Kim, J.-G., Kim, H.-K., Jegal, J.-P., et al., Proc. Int. Conf. on Nanomaterials Applications and Properties, Alushta, 2012, p. 3.Google Scholar
  38. 38.
    Bak, S.-M., Nam, K., Lee, C., et al., J. Mater. Chem., 2011, vol. 21, p. 17309.CrossRefGoogle Scholar
  39. 39.
    Zhang, W., Zeng, Y., Xu, C., et al., Beilstein. J. Nanotechnol., 2012, vol. 3, p. 513.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rui, X., Sim, D., Wong, K., et al., J. Power Sources, 2012, vol. 214, p. 171.CrossRefGoogle Scholar
  41. 41.
    Jiang, Y., Xu, W., Chen, D., et al., Electrochim. Acta, 2012, vol. 85, p. 377.CrossRefGoogle Scholar
  42. 42.
    Liu, H., Yang, G., Zhang, X., et al., J. Mater. Chem., 2012, vol. 22, p. 11039.CrossRefGoogle Scholar
  43. 43.
    Zhu, J., Yang, R., and Wu, K., Ionics (Kiel), 2012, vol. 0. Available only online.Google Scholar
  44. 44.
    Liu, H., Gao, P., Fang, J., and Yang, G., Chem. Commun. (Camb.), 2011, vol. 47, p. 9110.CrossRefGoogle Scholar
  45. 45.
    Du, Y., Tang, Y., Huang, F., and Chang, C., RSC Adv., 2016, vol. 6, p. 52279.CrossRefGoogle Scholar
  46. 46.
    Wi, S., Kim, J., Park, K., et al., RSC Adv., 2016, vol. 6, p. 105081.CrossRefGoogle Scholar
  47. 47.
    Jiang, G., Hu, Z., Xiong, J., et al., J. Alloys Compd., 2018, vol. 767, p. 528.CrossRefGoogle Scholar
  48. 48.
    Yuan, Z., Xue, Y., Sun, L., et al., Ferroelectrics, 2018, vol. 528, p. 1.CrossRefGoogle Scholar
  49. 49.
    Ma, H., Xiang, J., and Xia, X., Mater. Res. Bull., 2018, vol. 101, p. 205.CrossRefGoogle Scholar
  50. 50.
    Rosaiah, P., Zhu, J., Hussain, O.M., et al., J. Electroanal. Chem., 2018, vol. 811, p. 1.CrossRefGoogle Scholar
  51. 51.
    Wang, X., Feng, Z., Huang, J., et al., Carbon N Y, 2018, vol. 127, p. 149.CrossRefGoogle Scholar
  52. 52.
    Chen, M., Kou, K., Tu, M., et al., Solid State Ionics, 2017, vol. 310, p. 95.CrossRefGoogle Scholar
  53. 53.
    Juarez-Yescas, C., Ramos-Sánchez, G., and González, I., J. Solid State Electrochem., 2018, vol. 22, p. 3225.CrossRefGoogle Scholar
  54. 54.
    Yang, D., Velamakanni, A., Bozoklu, G., et al., Carbon N.Y., 2009, vol. 47, p. 145.CrossRefGoogle Scholar
  55. 55.
    Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, p. 309.CrossRefGoogle Scholar
  56. 56.
    Belharouak, I., Johnson, C., and Amine, K., Electrochem. Commun., 2005, vol. 7, p. 983.CrossRefGoogle Scholar
  57. 57.
    Nan, H.Y., Ni, Z.H., Wang, J., et al., J. Raman Spectrosc., 2013, vol. 44, p. 1018.CrossRefGoogle Scholar
  58. 58.
    Mattevi, C., Eda, G., Agnoli, S., et al., Adv. Funct. Mater., 2009, vol. 19, p. 2577.CrossRefGoogle Scholar
  59. 59.
    Erickson, K., Erni, R., Lee, Z., et al., Adv. Mater., 2010, vol. 22, p. 4467.CrossRefPubMedGoogle Scholar
  60. 60.
    Krishnan, D., Kim, F., Luo, J., et al., Nano Today, 2012, vol. 7, pp. 137–152.CrossRefGoogle Scholar
  61. 61.
    Wu, Z.-S., Zhou, G., Yin, L.-C., et al., Nano Energy, 2012, vol. 1, p. 107.CrossRefGoogle Scholar
  62. 62.
    Gaberscek, M., Dominko, R., and Jamnik, J., Electrochem. Commun., 2007, vol. 9, p. 2778.CrossRefGoogle Scholar
  63. 63.
    Wang, Y., Wang, J., Liao, H., et al., Int. J. Electrochem. Sci., 2013, vol. 8, p. 8730.Google Scholar
  64. 64.
    Patoux, S., Wurm, C., Morcrette, M., et al., J. Power Sources, 2003, vols. 119–121, p. 278.CrossRefGoogle Scholar
  65. 65.
    Morcrette, M., Wurm, C., and Masquelier, C., Solid State Sci., 2002, vol. 4, p. 239.CrossRefGoogle Scholar
  66. 66.
    Hu, B., Wu, F.-Y., Lin, C.-T., et al., Nat. Commun., 2013, vol. 4, p. 1687.CrossRefGoogle Scholar
  67. 67.
    Zhao, Q., Zhang, Y., Meng, Y., et al., Nano Energy, 2017, vol. 34, p. 408.CrossRefGoogle Scholar
  68. 68.
    Duan, Y., Zhang, B., Zheng, J., et al., Nano Lett., 2017, vol. 17, p. 6018.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhukovskii, Y.F., Balaya, P., Kotomin, E.A., and Maier, J., Phys. Rev. Lett., 2006, vol. 96, p. 058302.CrossRefPubMedGoogle Scholar
  70. 70.
    Yu, X.Q., Sun, J.P., Tang, K., et al., Phys. Chem. Chem. Phys., 2009, vol. 11, p. 9497.CrossRefPubMedGoogle Scholar
  71. 71.
    Shin, J.-Y., Samuelis, D., and Maier, J., Adv. Funct. Mater., 2011, vol. 21, p. 3464.CrossRefGoogle Scholar
  72. 72.
    Liu, E., Wang, J., Shi, C., et al., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 18147.CrossRefPubMedGoogle Scholar
  73. 73.
    Kaprans, K., Bajars, G., Kucinskis, G., et al., IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 77, p. 012042.Google Scholar
  74. 74.
    Kaprans, K., Mateuss, J., Dorondo, A., et al., Solid State Ionics, 2018, vol. 319, p. 1.CrossRefGoogle Scholar
  75. 75.
    Su, F.-Y., He, Y.-B., Li, B., et al., Nano Energy, 2012, vol. 1, p. 429.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Solid State Physics, University of LatviaRigaLatvia

Personalised recommendations