Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 963–969 | Cite as

Electrochemical and Mass Transport Characteristics of the Strongly Basic MA-41 Membrane Modified by Poly-N,N-Diallylmorpholinium

  • V. I. Zabolotskii
  • D. A. BondarevEmail author
  • A. V. Bespalov


Poly-N,N-diallylmorpholinium bromide is synthesized and characterized using the methods of IR and NMR spectroscopy. The surface modification of MA-41 industrial heterogeneous membranes (Russia) by this polyelectrolyte is carried out from an equivalent mixture of N-methylpyrrolidone and anhydrous formic acid and also from aqueous solutions. The electrochemical characteristics of the modified membranes are studied on the setup with a rotating membrane disk. It is found that the reaction of water dissociation on modified membranes occurs less intensively than on the initial membrane and the main mass transport mechanism in the superlimiting current modes in systems with modified membranes is electroconvection.


strongly basic membrane poly-N,N-diallylmorpholinium bromide modification rotating membrane disk electroconvection electrodiffusion exaltation water dissociation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rubinshtein, I. and Shtilman, L., Voltage against current curves of cation-exchange membranes, J. Chem. Soc., Faraday Trans. 2, 1979, vol. 75, p. 231.CrossRefGoogle Scholar
  2. 2.
    Zabolotskii, V.I. and Nikonenko, V.V., Electrodialysis of dilute electrolyte solutions: some theoretical and applied aspects, Russ. J. Electrochem., 1996, vol. 32, no. 2, p. 223.Google Scholar
  3. 3.
    Zabolotsky, V.I. and Nikonenko, V.V., Perenos ionov v membranakh (Ion transport in membranes), Moscow: Nauka, 1996 (in Russian).Google Scholar
  4. 4.
    Strathmann, H., Electrodialysis, a mature technology with a multitude of new applications, Desalination, 2010, vol. 264, no. 3, p. 268.CrossRefGoogle Scholar
  5. 5.
    Simons, R., Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes, Electrochim. Acta, 1984, vol. 29, no. 2, p. 151.CrossRefGoogle Scholar
  6. 6.
    Zabolotskii, V.I., Shel’deshov, N.V., and Gnusin, N.P., Dissociation of water molecules in systems with ion–exchange membranes, Russ. Chem. Rev., 1988, vol. 57, no. 8, p. 801.CrossRefGoogle Scholar
  7. 7.
    Bauer, B., Strathmann, H., and Effenberger, F., Anion–exchange membranes with improved alkaline stability, Desalination, 1990, vol. 79, p. 125.CrossRefGoogle Scholar
  8. 8.
    Hwang, U.-S. and Choi J.-H., Changes in the electrochemical characteristics of a bipolar membrane immersed in high concentration of alkaline solutions, Sep. Purif. Technol., 2006, vol. 48, no. 1, p. 16.CrossRefGoogle Scholar
  9. 9.
    Shaposhnik, V.A., Kastyuchik, A.S., and Kozaderova, O.A., Irreversible dissociation of water molecules on the ion–exchange membrane–electrolyte solution interface in electrodialysis, Russ. J. Electrochem., 2008, vol. 44, no. 9, p. 1073.CrossRefGoogle Scholar
  10. 10.
    Pismenskaya, N.D., Fedotov, Y.A., Nikonenko, V.V., Belova, E.I., Lopatkova, G.Yu., and Zabolotsky, V.I., Method of modifying anion-exchange membranes, RF Patent 2410147, 2008.Google Scholar
  11. 11.
    Zabolotsky, V.I., Sharafan, M.V., and Chermit, R.K., Multilayer composite polymer strongly basic membrane and method for production thereof, RF Patent 2559486, 2013.Google Scholar
  12. 12.
    Kniaginicheva, E.V., Belashova, E.D., and Pismenskaya, N.D., Electrochemical characteristics of AMX membrane modified with strong bifunctional polyelectrolytes, Sorbtsionnye Khromatogr. Protsessy, 2014, vol. 14, no. 5, p. 864.Google Scholar
  13. 13.
    Pismenskaya, N.D., Nikonenko, V.V., Belova, E.I., Lopatkova, G.Yu., Sistat, Ph., Pourcelly, G., and Larshe, K., Coupled convection of solution near the surface of ion-exchange membranes in intensive current regimes, Russ. J. Electrochem., vol. 43, no. 3, p. 307.Google Scholar
  14. 14.
    Zabolotskiy, V.I., But, A.Yu., Vasil’eva, V.I., Akberova, E.M., and Melnikov, S.S., Ion transport and electrochemical stability of strongly basic anionexchange membranes under high current electrodialysis conditions, J. Membrane Sci., 2017, vol. 526, p. 60.CrossRefGoogle Scholar
  15. 15.
    Zabolotsky, V.I., Novak, L., Kovalenko, A.V., Nikonenko, V.V., Urtenov, M.H., Lebedev, K.A., and But, A.Yu., Electroconvection in systems with hetero-geneous ion-exchange membranes, Pet. Chem., 2017, vol. 57, no. 7, p. 779.CrossRefGoogle Scholar
  16. 16.
    De Vynck, V. and Goethals, E.F., Synthesis and polymerization of N,N-diallylpyrrolidinium bromide, Macromol. Rapid Commun., 1997, vol. 18, no. 2, p. 149.CrossRefGoogle Scholar
  17. 17.
    Bicak, N. and Senkal, B.F., Synthesis and polymerization of N,N-diallyl morpholinium bromide, Eur. Polym. J., 2000, vol. 36, no. 4, p. 703.CrossRefGoogle Scholar
  18. 18.
    Ali, S.A., Ahmed, S.Z., and Hamad, E.Z., Cyclopolymerization Studies of Diallyl-and Tetraallylpiperazinium Salts, J. Applied Polym. Sci., 1996, vol. 61, no. 7, p. 1077.CrossRefGoogle Scholar
  19. 19.
    Jaeger, W., Bohrisch, J., and Laschewsky, A., Synthetic polymers with quaternary nitrogen atoms–Synthesis and structure of the most used type of cationic polyelectrolytes, Prog. Polym. Sci., 2010, vol. 35, no. 5, p. 511.CrossRefGoogle Scholar
  20. 20.
    Vasil’eva, V.I., Akberova, E.M., Zhiltsova, A.V., Chernykh, E.I., Sirota, E.A., and Agapov, B.L., SEM Diagnostics of the surface of MK-40 and MA-40 heterogeneous ion-exchange membranes in the swollen state after hermal treatment, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2013, vol. 7, no. 5, p. 833.CrossRefGoogle Scholar
  21. 21.
    Ionitovye membrany. Granulyaty. Poroshki: Katalog (Ionite membranes. Granulates. Powders: Catalog), Moscow: NIITEHim, 1977 (in Russian).Google Scholar
  22. 22.
    Zabolotskii, V.I., Sharafan, M.V., Shel’deshov, N.V., and Lovtsov, E.G., Electric mass transport of sodium chloride through cation-exchange membrane MK-40 in dilute sodium chloride solutions: A rotating membrane disk study, Russ. J. Electrochem., 2008, vol. 44, no. 2, p. 141.CrossRefGoogle Scholar
  23. 23.
    Zabolotskii, V.I., Sharafan, M.V., and Shel’deshov, N.V., Influence of the nature of membrane ionogenic groups on water dissociation and electrolyte ion transport: A rotating membrane disk study, Russ. J. Electrochem., 2008 vol. 44, no. 10, p. 1127.Google Scholar
  24. 24.
    Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physico-chemical hydrodynamics), Moscow: Fizmatgiz, 1959 (in Russian).Google Scholar
  25. 25.
    Bugakov, V.V., Zabolotsky, V.I., and Sharafan, M.V., Anion-exchange membrane MA-41 surface morphology effect on ion transfer mechanism under identical diffusion layer thickness conditions, Sorbtsionnye Khromatogr. Protsessy, 2010, vol. 10, no. 6, p. 870.Google Scholar
  26. 26.
    Kharkats, Yu.I., On the mechanism of the overlimiting current at the interface between ion–exchange membrane and electrolyte, Sov. Electrochem., 1985, vol. 21, no. 7, p. 917.Google Scholar
  27. 27.
    Jackson, M.B., Cyclopolymerization. XI. Polyelectrolytes and polyampholytes from N-alkyl-N,N-diallylamines and methacrylamide, J. Macromol. Sci., 1976, vol. 10, no. 5, p. 959.Google Scholar
  28. 28.
    Zabolotsky, V.I., Nikonenko, V.V., Pismenskaya, N.D., Laktionov, E.V., Urtenov, M.Kh., Strathmann, H., Wessling, M., and Koops, G.H., Coupled transport phenomena in overlimiting current electrodialysis, Sep. Purif. Technol., 1998, vol. 14, p. 255.CrossRefGoogle Scholar
  29. 29.
    Akberova, E.M. and Malykhin, M.D., Structural and physicochemical characteristics of the anion-exchange membranes MA-40 and MA-41 after thermochemical treatment, Sorbtsionnye Khromatogr. Protsessy, 2014, vol. 14, no. 2, p. 232.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Zabolotskii
    • 1
  • D. A. Bondarev
    • 1
    Email author
  • A. V. Bespalov
    • 1
  1. 1.Kuban State UniversityKrasnodarRussia

Personalised recommendations