Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 860–866 | Cite as

Electrochemical Sensing of Uric Acid Using a ZnO/Graphene Nanocomposite Modified Graphite Screen Printed Electrode

  • Rasoul RezaeiEmail author
  • Mohammad Mehdi Foroughi
  • Hadi Beitollahi
  • Reza Alizadeh
Article

Abstract

An electrochemical sensor has been fabricated using ZnO/GR nanocomposite for selective determination of uric acid (UA) in a phosphate buffer solution (PBS, pH 7.0). The electrochemical behaviour of UA at the ZnO/GR nanocomposite modified graphite screen printed electrodes (SPE) was studied by cyclic voltammetry and differential pulse voltammetry methods. The modified electrode exhibited remarkably anodic peak corresponding to the oxidation of uric acid over the concentration range of 1.0–100.0 μM with detection limit of 0.43 μM (S/N = 3). The fabricated sensor was further applied to the detection of uric acid in urine samples with good selectivity and high reproducibility.

Keywords

uric acid zinc oxide graphene graphite screen printed electrodes voltammetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qu, F., Ma, X., Zhu, L., and Chen, F., Switchable electrode functionalized with an azobenzene-containing copolymer thin film using the Langmuir–Schaefer technique for a “smart” uric acid/air fuel cell, Electrochem. Commun., 2017, vol. 77, p. 49.CrossRefGoogle Scholar
  2. 2.
    Sheng, Y., Yang, H., Wang, Y., Han, L., Zhao, Y., and Fan, A., Silver nanoclusters-catalyzed luminol chemiluminescence for hydrogen peroxide and uric acid detection, Talanta, 2017, vol. 166, p. 268.CrossRefGoogle Scholar
  3. 3.
    Beitollahi, H., Mazloum Ardakani, M., Naeimi, H., and Ganjipour, B., Electrochemical characterization of 2,2'-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone-carbon nanotube paste electrode and its application to simultaneous voltammetric determination of ascorbic acid and uric acid, J. Solid State Electrochem., 2009. vol. 13, p. 353.Google Scholar
  4. 4.
    Wang, C.Y., Huang, C.W., Wei, T.T., Wu, M.Y., and Lin, Y.W., Fluorescent detection of uric acid in biological samples through the inhibition of cobalt(II) catalyzed Amplex UltraRed, Sens. Actuators, B, 2017, vol. 244, p. 357.CrossRefGoogle Scholar
  5. 5.
    Mohammadi, S., Beitollahi, H., and Mohadesi, A., Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid, Sens. Lett., 2013, vol. 11, p. 388.CrossRefGoogle Scholar
  6. 6.
    Liu, Y., Li, H., Guo, B., Wei, L., Chen, B., and Zhang, Y., Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles, Biosens. Bioelectron., 2017, vol. 91, p. 734.CrossRefGoogle Scholar
  7. 7.
    Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., and Naeimi, H., Novel carbon nanotube paste electrode for simultaneous determination of norepinephrine, Uric acid and D-penicillamine, Int. J. Electrochem. Sci., 2010, vol. 5, p. 531.Google Scholar
  8. 8.
    Dey, M.K. and Satpati, A.K., Functionalised carbon nano spheres modified electrode for simultaneous determination of dopamine and uric acid, J. Electroanal. Chem., 2017, vol. 767, p. 95.CrossRefGoogle Scholar
  9. 9.
    Ferin, R., Pavao, M.L., and Baptista, J., Rapid, sensitive and simultaneous determination of ascorbic and uric acid in human plasma by ion-exclusion HPLC-UV, Clin. Biochem., 2013, vol. 46, p. 665.CrossRefGoogle Scholar
  10. 10.
    Lu, H.F., Li, J.Y., Zhang, M.M., Wu, D., and Zhang, Q.L., A highly selective and sensitive colorimetric uric acid biosensor based on Cu(II)-catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine, Sens. Actuators, B, 2017, vol. 244, p. 77.CrossRefGoogle Scholar
  11. 11.
    Sheng, Y., Yang, H., Wang, Y., Han, L., Zhao, Y., and Fan, A., Silver nanoclusters-catalyzed lutninol chemiluminescence for hydrogen peroxide and uric acid detection, Talanta, 2017, vol. 166, p. 268.CrossRefGoogle Scholar
  12. 12.
    Li, X.L., Li, G., Jiang, Y.Z., Kang, D., Jin, C.H., Shi, Q., Jin, T., Inoue, K., Todoroki, K., Toyooka, T., and Min, J.Z., Human nails metabolite analysis: A rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chroma-tography with UV-detection, J. Chromatogr. B, 2015, vol. 1002, p. 394.CrossRefGoogle Scholar
  13. 13.
    Gupta, V.K., Ganjali, M.R., Norouzi, P., Khani, H., Nayak, A., and Agarwal, S., Electrochemical analysis of some toxic metals and drugs by ion selective electrodes, Crit. Rev. Anal. Chem., 2011, vol. 41, p. 282.CrossRefGoogle Scholar
  14. 14.
    Gupta, V.K., Karimi-Maleh, H., and Roya Sadegh, R., Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor, J. Electrochem. Sci., 2015, vol. 10, p. 303.Google Scholar
  15. 15.
    Beitollahi, H., Raoof, J.B., Karimi-Maleh, H., and Hosseinzadeh, R., Electrochemical behavior of isoproterenol in the presence of uric acid and folic acid at a carbon paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes, J. Solid State Electrochem., 2012, vol. 16, p. 1701.CrossRefGoogle Scholar
  16. 16.
    Gupta, V.K., Jain, S., and Khurana, U., A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II), Electroanalysis, 1997, vol. 9, p. 478.CrossRefGoogle Scholar
  17. 17.
    Prasad, R., Gupta, V.K., and Kumar, A., Metallotetraazaporphyrin based anion sensors: Regulation of sensor characteristics through central metal ion coordination, Anal. Chim. Acta, 2004, vol. 508, p. 61.CrossRefGoogle Scholar
  18. 18.
    Gupta, V.K., Jain, A.K., and Kumar, P., PVC-based membranes of N,N'-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor, Sens. Actuators, B, 2006, vol. 120, p. 259.CrossRefGoogle Scholar
  19. 19.
    Yu, H.W., Jiang, J.H., Zhang, Z., Wan, G.C., Liu, Z.Y., Chang, D., and Pan, H.Z., Preparation of quantum dots CdTe decorated graphene composite for sensitive detection of uric acid and dopamine, Anal. Biochem., 2017, vol. 519, p. 92.CrossRefGoogle Scholar
  20. 20.
    Gupta, V.K., Jain, A.K., Maheshwari, G., and Lang, H., Copper (II)-selective potentiometric sensor based on porphyrins in PVC matrix, Sens. Actuators, B, 2006, vol. 117, p. 99.CrossRefGoogle Scholar
  21. 21.
    Jain, A.K., Gupta, V.K., Radi, S., Singh, L.P., and Raisoni, J.R., A comparative study of Pb2+ sensors based on derivatized tetrapyrazole and calix[4]arene receptors, Electrochim. Acta, 2006, vol. 51, p. 2547.CrossRefGoogle Scholar
  22. 22.
    Gupta, V.K., Jain, A.K., Agarwal, P.K.S., and Maheshwari, G., Chromium(III)-selective sensor based on tri-othymotide in PVC matrix, Sens. Actuators, B, 2006, vol. 113, p. 182.CrossRefGoogle Scholar
  23. 23.
    Beitollahi, H., Raoof, J.B., and Hosseinzadeh, R., Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode, Anal. Sci., 2011, vol. 27, p. 991.CrossRefGoogle Scholar
  24. 24.
    Gupta, V.K., Singh, A.K., Mehtab, S., and Gupta, B.A., A Cobalt(II) selective PVC membrane based on a Schiff base complex of N,N-bis(salicylidene)-3,4-diaminotoluene, Anal. Chim. Acta, 2006, vol. 566, p. 5.CrossRefGoogle Scholar
  25. 25.
    Goyal, R.N., Gupta, V.K., and Bachheti, N., Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone, Anal. Chim. Acta, 2007, vol. 597, p. 82.CrossRefGoogle Scholar
  26. 26.
    Gupta, V.K., Jain S., and Chandra, S., Chemical Sensor for lanthanum(III) determination using aza crown as ionophore in poly (vinyl chloride) matrix, Anal. Chim. Acta, 2003, vol. 486, p. 199.CrossRefGoogle Scholar
  27. 27.
    Suprun, E.V., Zharkova, M.S., Veselovsky, A.V., Archakov, A.I., and Shumyantseva, V.V., Electrochemical oxidation of thrombin on carbon screen printed electrodes, Russ. J. Electrochem., 2017, vol. 53, p. 97.CrossRefGoogle Scholar
  28. 28.
    Beitollahi, H. and Garkani Nejad, F., Graphene Oxide/ZnO nanocomposite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.CrossRefGoogle Scholar
  29. 29.
    Li, S., Zhang, Q., Lu, Y., Ji, D., Zhang, D., Wu, J., Chen, X., and Liu, Q., One step electrochemical deposition and reduction of graphene oxide on screen printed electrode for impedance detection of glucose, Sens. Actuators, B, 2017, vol. 244, p. 290.CrossRefGoogle Scholar
  30. 30.
    Tajik, S., Taher, M.A., and Beitollahi, H., Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline, Sens. Actuators, B, 2014, vol. 197, p. 228.CrossRefGoogle Scholar
  31. 31.
    Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., and Vafaei, Z., Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II), J. Hazard. Mater., 2010, vol. 183, p. 402.CrossRefGoogle Scholar
  32. 32.
    Chekin, F., Bagheri, S., and Abd Hamid, S.B., Synthesis of graphene oxide nanosheet: A novel glucose sensor based on nickel-graphene oxide composite film, Russ. J. Electrochem., 2014, vol. 50, p. 1044.CrossRefGoogle Scholar
  33. 33.
    Goyal, R.N., Gupta, V.K., and Chatterjee, S., Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode, Sens. Actuators, B, 2010, vol. 149, p. 252.CrossRefGoogle Scholar
  34. 34.
    Beitollahi, H., Tajik, S., and Biparva, P., Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: Application to determination of sulfite and phenol in real samples, Measurement, 2014, vol. 56, p. 170.CrossRefGoogle Scholar
  35. 35.
    Galashev, A.E. and Zaikov, Y.P., Molecular dynamics study of Li+ migration through graphene membranes, Russ. J. Electrochem., 2015, vol. 51, p. 867.CrossRefGoogle Scholar
  36. 36.
    Beitollahi, H. and Salimi, H., A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and grapheme, J. Electrochem. Soc., 2016, vol. 163, p. H1157.Google Scholar
  37. 37.
    Mehta, J., Bhardwaj, N., Bhardwaj, S.K., Tuteja, S.K., Vinayak, P., Paul, A.K., Kim, K.H., and Deep, A., Graphene quantum dot modified screen printed immunosensor for the determination of parathion, Anal. Biochem., 2017, vol. 523, p. 1.CrossRefGoogle Scholar
  38. 38.
    Tajik, S., Taher, M.A., and Beitollahi, H., First report for electrochemical determination of levodopa and cabergoline: Application for determination of levodopa and cabergoline in human serum, urine and pharmaceutical formulations, Electroanalysis, 2014, vol. 26, p. 796.CrossRefGoogle Scholar
  39. 39.
    Yang, Y.J. and Li, W., CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of sunset yellow and tartrazine, Russ. J. Electrochem., 2015, vol. 51, p. 218.CrossRefGoogle Scholar
  40. 40.
    Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., A reversible fluorescence “off-on-off” sensor for sequential detection of aluminum and acetate/fluoride ions, Talanta, 2015, vol. 144, p. 80.CrossRefGoogle Scholar
  41. 41.
    Gupta, V.K., Singh, A.K., and Kumawat, L.K., Thiazole Schiff base turn-in fluorescent chemosensor for Al3+ ion, Sens. Actuators B, 2014, vol. 195, p. 98.CrossRefGoogle Scholar
  42. 42.
    Beitollahi, H. and Sheikhshoaie, I., Electrochemical behavior of carbon nanotube/Mn(III) salen doped carbon paste electrode and its application for sensitive determination of N-acetylcysteine in the presence of folic acid, Int. J. Electrochem. Sci., 2012, vol. 7, p. 7684.Google Scholar
  43. 43.
    Gupta, V.K., Goyal, R.N., and Sharma, R.A., Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone based receptors: poly (vinyl chloride) based sensor for acetate, Talanta, 2008, vol. 76, p. 859.CrossRefGoogle Scholar
  44. 44.
    Srivastava, S.K., Gupta, V.K., and Jain, S., PVC-based 2,2,2-cryptand sensors for zinc ions, Anal. Chem., 1996, vol. 68, p. 1272.CrossRefGoogle Scholar
  45. 45.
    Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., Selective naked-eye detection of Magnesium(II) ions using a coumarin-derived fluorescent probe, Sens. Actuators, B, 2015, vol. 207, p. 216.CrossRefGoogle Scholar
  46. 46.
    Karimi-Maleh, H., Keyvanfard, M., Alizad, K., Fouladgar, M., Beitollahi, H., Mokhtari, A., and Gholami- Orimi, F., Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 6141.Google Scholar
  47. 47.
    Gupta, V.K., Gupta, V.K., Al Khayat, M., and Gupta, B., Neutral carriers based polymeric membrane electrodes for selective determination of mercury(II), Anal. Chim. Acta, 2007, vol. 590, p. 81.Google Scholar
  48. 48.
    Jain, A.K., Gupta, V.K., Singh L.P., and Khurana, U., Macrocycle based Membrane Sensors for the determination of cobalt(II) ions, Analyst, 1997, vol. 122, p. 583.CrossRefGoogle Scholar
  49. 49.
    Gupta, V.K., Chandra, S., and Mangla, R., Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor, Electrochim. Acta, 2002, vol.47, p. 1579.Google Scholar
  50. 50.
    He, P., Yang, K., Wang, W., Dong, F., Du, L., and Deng, Y., Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode, Russ. J. Electrochem., 2013, vol. 49, p. 359.CrossRefGoogle Scholar
  51. 51.
    Gupta, V.K., Prasad, R., Mangla, R., and Kumar, P., New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly (vinyl chloride) matrix, Anal. Chim. Acta, 2000, vol. 420, p. 19.CrossRefGoogle Scholar
  52. 52.
    Jain, R., Gupta, V.K., Jadon, N., and Radhapyari, K., Voltammetric determination of cefixime in pharmaceuticals and biological fluids, Anal. Biochem., 2010, vol. 407, p. 79.CrossRefGoogle Scholar
  53. 53.
    Gupta, V.K., Mangla, R., Khurana U., and Kumar, P., Determination of uranyl ions using poly (vinyl chloride) based 4-tert-butylcalix [6] arene membrane sensor, Electroanalysis, 1999, vol. 11, p. 573.CrossRefGoogle Scholar
  54. 54.
    Jaiswal, N., Tiwari, I., Foster, C.W., and Banks, C.E., Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO2 decorated graphene oxide nanocomposite screen-printed electrodes, Electrochim. Acta, 2017, vol. 227, p. 255.CrossRefGoogle Scholar
  55. 55.
    Gupta, V.K., Sethi, B., Sharma, R.A., Agarwal, S., and Bharti, A., Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4] arene as a cationic receptor, J. Mol. Liq., 2013, vol. 177, p. 114.CrossRefGoogle Scholar
  56. 56.
    Jain, A.K., Gupta, V.K., Sahoo B.B., and Singh, L.P., Copper(II)-selective electrodes based on macrocyclic compounds, Anal. Proc. incl. Anal. Commun., 1995, vol. 32, p. 99.CrossRefGoogle Scholar
  57. 57.
    Gupta, V.K., Agarwal, S., and Singhal, B., A review on the recent advances on potentimetric membrane sensors for pharmaceutical analysis, Comb. Chem. High Throughput Screen, 2011, vol. 14, p. 284.CrossRefGoogle Scholar
  58. 58.
    Karimi-Maleh, H., Ensafi, A.A., Beitollahi, H., Khalilzadeh, M.A., and Biparva, P., Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: Application for determination of sulfite in real samples, Ionics, 2012, vol. 18, p. 687.CrossRefGoogle Scholar
  59. 59.
    Gupta, V.K., Jain, A.K., Agarwal, S., and Maheshwari, G., An iron(III) ion selective sensor based on a μ bis (tridentate) ligand, Talanta, 2007, vol. 71, p. 1964.CrossRefGoogle Scholar
  60. 60.
    Jain, A.K., Gupta, V.K., Khurana U., and Singh, L.P., A new membrane Sensor for UO2+, based on 2-Hydroxyacetophenoneoxime-thioureatrioxane resin, Electroanalysis, 1997, vol. 9, p. 857.CrossRefGoogle Scholar
  61. 61.
    Gupta, V.K., Pathania, D., Agarwal, S., and Sharma, S., Decolorization of hazardous dye from water system using chemical modified Ficus carica adsorbent, J. Mol. Liq., 2012, vol. 174, p. 86.CrossRefGoogle Scholar
  62. 62.
    Akhgar, M.R., Beitollahi, H., Salari, M., Karimi-Maleh, H., and Zamani, H., Fabrication of a sensor for simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified carbon nanotube paste electrode, Anal. Methods, 2012, vol. 4, p. 259.Google Scholar
  63. 63.
    Gupta, V.K., Mittal, A., Malviya, A., and Mittal, J., Adsorption of Carmoisine A from wastewater using waste materials—Bottom Ash and De-Oiled Soya, J. Colloid Interface Sci., 2009, vol. 355, p. 24.CrossRefGoogle Scholar
  64. 64.
    Srivastava, S.K., Gupta, V.K., and Jain, S., Determination of lead using poly (vinyl chloride) based crown ether membrane, Analyst, 1995, vol. 120, p. 495.CrossRefGoogle Scholar
  65. 65.
    Gupta, V.K., Jain, A.K., and Maheshwari, G., Novel aluminum(III) selective potentiometric sensor based on morin in poly (vinyl chloride) matrix, Talanta, 2007, vol. 72, p. 1469.CrossRefGoogle Scholar
  66. 66.
    Miao, F. and Tao, B., Photovoltaic properties of oriented ZnO nanowires arrays decorated with TiO2 shell layer for dye-sensitized solar cell application, Russ. J. Electrochem., 2016, vol. 52, p. 533.CrossRefGoogle Scholar
  67. 67.
    Jiang, Y., Sun, R., Zhang, H.B., Min, P., Yang, D., and Yu, Z.Z., Graphene-coated ZnO tetrapod whiskers for thermally and electrically conductive epoxy composites, Composites, Part A, 2017, vol. 94, p. 104.CrossRefGoogle Scholar
  68. 68.
    Zhao, Y., Ma, J., Liu, J., and Bao, Y., Synthesis of fireworks-shaped ZnO/graphite-like carbon nanowires with enhanced visible-light photocatalytic activity and anti-photocorrosion, Colloids Surf., A, 2017, vol. 518, p. 57.CrossRefGoogle Scholar
  69. 69.
    Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.CrossRefGoogle Scholar
  70. 70.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., N.Y.: Wiley, 2001.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Rasoul Rezaei
    • 1
    Email author
  • Mohammad Mehdi Foroughi
    • 1
  • Hadi Beitollahi
    • 2
  • Reza Alizadeh
    • 3
  1. 1.Department of Chemistry, Faculty of SciencesIslamic Azad University, Kerman BranchKermanIran
  2. 2.Environment Department, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
  3. 3.Department of Chemistry, Faculty of ScienceQom UniversityQomIran

Personalised recommendations