Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 990–998 | Cite as

Formation Efficiency of Porous Oxide Films in Aluminum Anodizing

  • E. O. Gordeeva
  • I. V. RoslyakovEmail author
  • A. I. Sadykov
  • T. A. Suchkova
  • D. I. Petukhov
  • T. B. Shatalova
  • K. S. Napolskii


Anodic oxidation of aluminum in acidic electrolytes is widely used for the formation of porous oxide films with a regular structure on the metal surface. Despite the century-old history of this process, the mechanism of channel ordering into a 2D hexagonal array is still not entirely clear. This work studies the modes of porous oxide film formation in 0.3 M oxalic acid at the anodizing voltages of 20 to 130 V and in 0.3 M sulfuric acid in the range of 19 to 60 V. The mass fraction of electrolyte impurities in the anodic aluminum oxide (AAO) structure, the formation efficiency, the volume expansion factor of the material in anodizing, and oxide film porosity are determined for the given conditions. The wide range of applied anodizing voltages allowed establishing a relationship between the degree of ordering of porous structures and the formation efficiency of anodic alumina and volume expansion of the material.


anodic alumina anodizing porous films formation efficiency of oxide layer volume expansion factor structure ordering self-organization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bengough, G.D. and Stuart, J.M., Improved process of protecting surfaces of aluminium of aluminium alloys, UK Patent 223994, 1923.Google Scholar
  2. 2.
    Bengough, G.D. and Stuart, J.M., A process of producing a colored surface on aluminium or aluminium alloys, UK Patent 223995, 1924.Google Scholar
  3. 3.
    Masuda, H. and Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, 1995, vol. 268, no. 5216, p. 1466.CrossRefGoogle Scholar
  4. 4.
    Lee, W. and Park, S.J., Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures, Chem. Rev., 2014, vol. 114, no. 15, p. 7487.CrossRefGoogle Scholar
  5. 5.
    Sulka, G.D., Nanostructured materials in electrochemistry, W.: WILEY-VC, 2008, pp. 1–116.Google Scholar
  6. 6.
    Valeev, R.G., Deev, A.N., Beltyukov, A.N., Romanov, E.A., Kriventsov, V.V., Mezentsev, N.A., Eliseev, A.A., and Napolskii, K.S., Synthesis and structure study of ordered arrays of ZnSe nanodots, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2010, vol. 4, no. 4, p. 645.CrossRefGoogle Scholar
  7. 7.
    Vorobyova, A.I., Utkina, E.A., and Komar, O.M., Homogeneous deposition of nickel in pores of the ordered thin aluminum oxide, Russ. Microelectron., 2013, vol. 42, no. 2, p. 79.CrossRefGoogle Scholar
  8. 8.
    Bograchev, D.A., Davydov, A.D., and Volgin, V.M., Modeling of metal electrodeposition in the pores of anodic alumina oxide, Russ. J. Electrochem., 2015, vol. 51, no. 9, p. 799.CrossRefGoogle Scholar
  9. 9.
    Baryshnikov, S.V., Milinskii, A.Y., Charnaya, E.V., Tien, C., and Stukova, E.V., Dielectric studies of nanopous alumina films filled with the Rochelle salt, Phys. Solid State, 2010, vol. 52, no. 7.Google Scholar
  10. 10.
    Shelkovnikov, V.V., Lyubas, G.A., and Korotaev, S.V., Enhanced reflective interference spectra of nanoporous anodic alumina films by double electrochemical deposition of chemical metal nanoparticles, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 2, p. 227.CrossRefGoogle Scholar
  11. 11.
    Atrashchenko, A.V., Krasilin, A.A., Kuchuk, I.S., Aryslanova, E.M., Chivilikhin, S.A., and Belov, P.A., Electrochemical methods of synthesis of hyperbolic metamaterials, Nanosyst.: Phys., Chem., Math., 2012, vol. 3, no. 3, p. 31.Google Scholar
  12. 12.
    Petukhov, D.I., Eliseev, A.A., Buldakov, D.A., Napol’skii, K.S., Lukashin, A.V., Tret’yakov, Yu.D., and Yampol’skii, Yu.P., Anodic aluminum oxide: membranes with controlled gas penetrability, Membrany, 2009, vol. 3, no. 43, p. 16.Google Scholar
  13. 13.
    Lira, H. and Paterson, R., New and modified anodic alumina membranes: Part III. Preparation and characterisation by gas diffusion of 5 nm pore size anodic alumina membranes, J. Membr. Sci., 2002, vol. 206, nos. 1–2, p. 375.Google Scholar
  14. 14.
    Buldakov, D.A., Petukhov, D.I., Borodinov, N.S., and Eliseev, A.A., Anodic aluminum oxide membranes for dialysis processes, Al’tern. Energ. Ekol., 2013, no. 8 (130), p. 101.Google Scholar
  15. 15.
    Gudkov, V.A., Vedeneev, A.S., Rylkov, V.V., Temiryazeva, M.P., Kozlov, A.M., Nikolaev, S.N., Pankov, M.A., Golovanov, A.N., Semisalova, A.S., Perov, N.S., Dukhnovskii, M.P., and Bugaev, A.S., Synthesis of spatially ordered ensemble of Co nanocylinders in porous alumina matrix on surface of GaAs structures, Tech. Phys. Lett., 2013, vol. 39, no. 9, p. 805.CrossRefGoogle Scholar
  16. 16.
    Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Lukashin, A.V., Lebedev, V.A., Itkis, D.M., and Tretyakov, Yu.D., Calibration gratings based on selfassembled anodic alumina porous films, Al’tern. Energ. Ekol., 2009, vol. 79, no. 11, p. 86.Google Scholar
  17. 17.
    Roslyakov, I.V., Napolskii, K.S., Evdokimov, P.V., Napolskii, F.S., Dunaev, A.V., Eliseev, A.A., Lukashin, A.V., and Tretyakov, Yu.D., Thermal properties of anodic alumina membranes, Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 1, p. 120.Google Scholar
  18. 18.
    Roslyakov, I.V., Kolesnik, I.V., Napolskii, K.S., Karelin, A.P., Mironov, S.M., Stolyarov, V.S., Surtaev, V.N., and Sayapin, O.A., Development of sensor technologies and technique of monotoring explosiveness of hydrocarbon–air mixtures, Nauchno-Tekh. Vestn. OAO NK “Rosneft”, 2015, vol. 4, p. 85.Google Scholar
  19. 19.
    Roslyakov, I.V., Gordeeva, E.O., and Napolskii, K.S., Role of electrode reaction kinetics in self-ordering of porous anodic alumina, Electrochim. Acta, 2017, vol. 241, p. 362.CrossRefGoogle Scholar
  20. 20.
    Chen, W., Wu, J.S., and Xia, X.H., Porous anodic alumina with continuously manipulated pore/cell size, ACS Nano, 2008, vol. 2, no. 5, p. 959.CrossRefGoogle Scholar
  21. 21.
    Ono, S., Saito, M., and Asoh, H., Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim. Acta, 2005, vol. 51, no. 5, p. 827.CrossRefGoogle Scholar
  22. 22.
    Sun, C., Luo, J., Wu, L., and Zhang, J., Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm, ACS Appl. Mater. Interfaces, 2010, vol. 2, no. 5, p. 1299.CrossRefGoogle Scholar
  23. 23.
    Kashi, M.A., Ramazani, A., Noormohammadi, M., Zarei, M., and Marashi, P., Optimum self-ordered nanopore arrays with 130–270 nm interpore distances formed by hard anodization in sulfuric/oxalic acid mixtures, J. Phys. D: Appl. Phys., 2007, vol. 40, no. 22, p. 7032.CrossRefGoogle Scholar
  24. 24.
    Zaraska, L., Stpniowski, W.J., Ciepiela, E., and Sulka, G.D., The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid, Thin Solid Films, 2013, vol. 534, p. 155.CrossRefGoogle Scholar
  25. 25.
    Stepniowski, W.J., Nowak-Stepniowska, A., Michalska-Domanska, M., Norek, M., Czujko, T., and Bojar, Z., Fabrication and geometric characterization of highlyordered hexagonally arranged arrays of nanoporous anodic alumina, Pol. J. Chem. Technol., 2014, vol. 16, no. 1, p. 63.Google Scholar
  26. 26.
    Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Byelov, D.V., Petukhov, A.V., Grigoryeva, N.A., Bouwman, W.G., Lukashin, A.V., Chumakov, A.P., and Grigoriev, S.V., The kinetics and mechanism of longrange pore ordering in anodic films on aluminum, J. Phys. Chem. C, 2011, vol. 115, no. 48, p. 23726.CrossRefGoogle Scholar
  27. 27.
    Napolskii, K.S., Roslyakov, I.V., Romanchuk, A.Y., Kapitanova, O.O., Mankevich, A.S., Lebedev, V.A., and Eliseev, A.A., Origin of long-range orientational pore ordering in anodic films on aluminium, J. Mater. Chem., 2012, vol. 22, no. 24, p. 11922.CrossRefGoogle Scholar
  28. 28.
    Roslyakov, I.V., Eliseev, A.A., Yakovenko, E.V., Zabelin, A.V., and Napolskii, K.S., Longitudinal pore alignment in anodic alumina films grown on polycrystalline metal substrates, J. Appl. Crystallogr., 2013, vol. 46, no. 6, p. 1705.CrossRefGoogle Scholar
  29. 29.
    Roslyakov, I.V., Koshkodaev, D.S., Eliseev, A.A., Hermida-Merino, D., Petukhov, A.V., and Napolskii, K.S., Crystallography–induced correlations in pore ordering of anodic alumina films, J. Phys. Chem. C, 2016, vol. 120, no. 35, p. 19698.Google Scholar
  30. 30.
    Le Cos, F., Arurault, L., and Datas, L., Chemical analysis of a single basic cell of porous anodic aluminium oxide templates, Mater. Charact., 2010, vol. 61, no. 3, p. 283.Google Scholar
  31. 31.
    Davies, J.A., Domeij, B., Pringle, J.P.S., and Brown, F., The migration of metal and oxygen during anodic film formation, J. Electrochem. Soc., 1965, vol. 112, p. 675.CrossRefGoogle Scholar
  32. 32.
    Shimizu, K., Direct observations of ion–implanted xenon marker layers in anodic barrier films on aluminium, Thin Solid Films, 1982, vol. 88, no. 3, p. 255.CrossRefGoogle Scholar
  33. 33.
    Osullivan, J.P. and Wood, G.C., The morphology and mechanism of formation of porous anodic films on aluminium, Proc. R. Soc. London, Ser. A, 1970, vol. 317, no. 1531, p. 511.CrossRefGoogle Scholar
  34. 34.
    Hebert, K.R., Albu, S.P., Paramasivam, I., and Schmuki, P., Morphological instability leading to formation of porous anodic oxide films, Nat. Mater., 2012, vol. 11, no. 2, p. 162.CrossRefGoogle Scholar
  35. 35.
    Thompson, G., Skeldon, P., Shimizu, K., and Wood, G., The compositions of barrier-type anodic films formed on aluminium in molybdate and tungstate electrolytes, Philos. Trans. R. Soc., A, 1995, vol. 350, no. 1692, p. 143.Google Scholar
  36. 36.
    Garcia-Vergara, S.J., Skeldon, P., Thompson, G.E., and Habakaki, H., Pore development in anodic alumina in sulphuric acid and borax electrolytes, Corros. Sci., 2007, vol. 49, no. 9, p. 3696.CrossRefGoogle Scholar
  37. 37.
    Jessensky, O., Muller, F., and Gosele, U., Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett., 1998, vol. 72, no. 10, p. 1173.CrossRefGoogle Scholar
  38. 38.
    Liao, J., Ling, Z., Li, Y., and Hu, X., The role of stress in the self-organized growth of porous anodic alumina, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 12, p. 8017.CrossRefGoogle Scholar
  39. 39.
    Vrublevsky, I., Parkoun, V., Sokol, V., Schreckenbach, J., and Marx, G., The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime, Appl. Surf. Sci., 2004, vol. 222, no. 215, p. 215.CrossRefGoogle Scholar
  40. 40.
    Nagayama, M. and Tamura, K., Dissolution of the anodic oxide film on aluminium in a sulphuric acid solution, Electrochim. Acta, 1967, vol. 12, no. 8, p. 1097.CrossRefGoogle Scholar
  41. 41.
    Mercier, D., Van Overmeere, Q., Santoro, R., and Proost, J., In-situ optical emission spectrometry during galvanostatic aluminum anodising, Electrochim. Acta, 2011, vol. 56, no. 3, p. 1329.Google Scholar
  42. 42.
    Baron-Wiechec, A., Ganem, J.J., Garcia-Vergara, S.J., Skeldon, P., Thompson, G.E., and Vickridge, I.C., 18O tracer study of porous film growth on aluminum in phosphoric acid, J. Electrochem. Soc., 2010, vol. 157, no. 11, p. C399.Google Scholar
  43. 43.
    Nishinaga, O., Kikuchi, T., Natsui, S., and Suzuki, R.O., Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing, Sci. Rep., 2013, vol. 3, p. 2748.CrossRefGoogle Scholar
  44. 44.
    Lee, W., Ji, R., Gosele, U., and Nielsch, K., Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nat. Mater., 2006, vol. 5, no. 9, p. 741.CrossRefGoogle Scholar
  45. 45.
    Schneider, C., Rasband, W., and Eliceiri, K., NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 2012, vol. 9, no. 7, p. 671.CrossRefGoogle Scholar
  46. 46. Scholar
  47. 47.
    Ebihara, K., Takahashi, H., and Nagayama, M., Structure and density of anodic oxide films formed on aluminum in oxalic acid solutions, J. Met. Finish. Soc. Jpn., 1983, vol. 34, no. 11, p. 548.CrossRefGoogle Scholar
  48. 48.
    Siejka, J. and Ortega, C., An 18O study of field-assisted pore formation in compact anodic oxide films on aluminum, J. Electrochem. Soc., 1977, vol. 124, no. 6, p. 883.CrossRefGoogle Scholar
  49. 49.
    Wu, Z., Richter, C., and Menon, L., A study of anodization process during pore formation in nanoporous alumina templates, J. Electrochem. Soc., 2007, vol. 154, no. 1, p. e8.CrossRefGoogle Scholar
  50. 50.
    Schwirn, K., Lee, W., Hillebrand, R., Steinhart, M., Nielsch, K., and Gosele, U., Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization, ACS Nano, 2008, vol. 2, no. 2, p. 302.CrossRefGoogle Scholar
  51. 51.
    Barber, C.B., Dobkin, D., and Huhdanpaa, H., The quickhull algorithm for convex hulls, ACM Trans. Math. Software, 1996, vol. 22, no. 4, p. 469.CrossRefGoogle Scholar
  52. 52.
    Vega, V., Garsia, J., Montero-Moreno, J.M., Hernando, B., Bachmann, J., Prida, V.M., and Nielsch, K., Unveiling the hard anodization regime of aluminum: insight into nanopores self-organization and growth mechanism, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 51, p. 28682.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. O. Gordeeva
    • 1
  • I. V. Roslyakov
    • 1
    • 2
    Email author
  • A. I. Sadykov
    • 2
  • T. A. Suchkova
    • 2
  • D. I. Petukhov
    • 1
    • 2
  • T. B. Shatalova
    • 1
    • 2
  • K. S. Napolskii
    • 1
    • 2
  1. 1.Department of Materials ScienceMoscow State UniversityMoscowRussia
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations