Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 930–936 | Cite as

The Mechanical Properties and Rate of Electrodeposition of Co−W Alloys from a Boron−Gluconate Bath: Impact of Anodic Processes

  • V. V. Danil’chuk
  • S. A. Silkin
  • A. V. Gotelyak
  • V. A. Buravets
  • T. F. Mitina
  • A. I. DikusarEmail author


The effects the anode material has on the rate of electrodeposition (current efficiency) and microhardness of Co–W alloys deposited from a boron–gluconate bath are studied in a broad range of bath ages Q (A h/L). We use nonconsumable (platinum and graphite) and consumable (tungsten, cobalt–tungsten) anodes. With the cobalt–tungsten double anode, the total concentration of W and Co species in the bath is maintained constant during electrodeposition. We find that, as Q increases, the anodic processes have a significant impact on both the rate of deposition and microhardness of the prepared coatings. Departing from the mechanism of induced codeposition in which the first stage is the formation of an intermediate species of the metal component that induces codeposition (Co), here we propose a model that takes into account the effects associated with the anodic processes. In this model, along with reduction at the cathode to give an alloy, this metal component can undergo oxidation at the anode.


Co–W coatings boron–gluconate bath rate of electrodeposition induced codeposition microhardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., Pellicer, E., and Podlaha-Murphy, E.J., Modern Trends in Tungsten Alloys Electrodeposition with Iron Group Metals, Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 6, p. 491.CrossRefGoogle Scholar
  2. 2.
    Eliaz, N. and Gileadi, E., Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals, Modern Aspects of Electrochemistry, 2008, vol. 42, p. 491.Google Scholar
  3. 3.
    Tsyntsaru, N., Cesiulis, H., Pellicer, E., Celis, J.-P., and Sort, J., Structural, magnetic, and mechanical properties of electrodeposited cobalt-tungsten alloys: Intrinsic and extrinsic interdependencies, Electrochim. Acta, 2013, vol. 104, p. 94.CrossRefGoogle Scholar
  4. 4.
    Tsyntsaru, N., Belevsky, S., Dikusar, A., and Celis, J.-P., Tribological Behaviour of Electrodeposited Cobalt-Tungsten Coatings: Dependence on Current Parameters, Trans. Inst. Metal Finish, 2008, vol. 86, p. 301.CrossRefGoogle Scholar
  5. 5.
    Capel, H., Shipway, P.H., and Harris, S.J., Sliding Wear Behavior of Electrodeposited Cobalt−Tungsten and Cobalt–Tungsten–Iron Alloys, Wear, 2003, vol. 255, p. 917.CrossRefGoogle Scholar
  6. 6.
    Weston, D.P., Shipway, P.H., Harris, S.J., and Cheng, M.K., Friction and Sliding Wear Behaviour of Electrodeposited Cobalt and Cobalt–Tungsten Alloy Coatings for Replacement of Electrodeposited Chromium, Wear, 2009, vol. 267, p. 934.CrossRefGoogle Scholar
  7. 7.
    Weston, D.P., Harris, S.J., Capel, H., Ahmed, N., Shipway, P.H., and Yellup, J.M., Nanostructured Co‒W Coatings Produced by Electrodeposition to Replace Hard Cr on Aerospace Components, Trans. Inst. Metal Finish, 2010, vol. 88, p. 47.CrossRefGoogle Scholar
  8. 8.
    Weston, D.P., Harris, S.J., Shipway, P.H., Weston, N.J., and Yap, G.N., Establishing Relationships Between Bath Chemistry, Electrodeposition and Microstructure of Co–W alloy Coatings Produced from a Gluconate Bath, Electrochim. Acta, 2010, vol. 55, p. 5695.Google Scholar
  9. 9.
    Weston, D.P., Gill, S.P.A., Fay, M., Harris, S.J., Yap, G.N., Zhang, D., and Dinsdale, K., Nano-structure of Co–W Alloy Electrodeposited from Gluconate Bath, Surf. Coat. Technol., 2013, vol. 236, p. 75.CrossRefGoogle Scholar
  10. 10.
    Belevskii, S.S., Bobanova, Z.I., Buravets, V.A., Gotelyak, A.V., Danil’shuk, V.V., Silkin, S.A., and Dikusar, A.I., Electrodeposition of Co–W Coatings from Boron Gluconate Electrolyte with a Soluble Tungsten Anode, Russ. J. Appl. Chem., 2016, vol. 89, p. 1427.CrossRefGoogle Scholar
  11. 11.
    Gotelyak, A.V., Danil’shuk, V.V., Dikusar A.I., and Silkin, S.A., Electrodeposition of Co–W Covers from Gluconate Electrolyte in Hull’Cell with Rotating Cylindrical Electrode, Izv. Vyssh. Uchebn. Zaved. Seriya Khimiya i Khimicheskaya Tekhnologiya, 2014, vol. 57, no. 6, p. 78.Google Scholar
  12. 12.
    Gotelyak, A.V., Silkin, S.A., Yahova, E.A., and Dikusar, A.I., Effect of pH and Volume Current Density On Deposition Rate and Microhardness of Co−W Coatings Electrodeposited from Concentrated Boron−Gluconate Electrolyte, Russ. J. Appl. Chem., 2017, vol. 90, p. 541.CrossRefGoogle Scholar
  13. 13.
    Silkin, S.A., Gotelyak, A.V., Tsyntsaru, N.I., and Dikusar, A.I., Size Effect of Microhardness of Nanocrystalline Co–W Coatings Produced from Citrate and Gluconate Solutions, Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 3, p. 228.CrossRefGoogle Scholar
  14. 14.
    Silkin, S.A., Gotelyak, A.V., Tsyntsaru, N.I., and Dikusar, A.I., Electrodeposition of Alloys of the Iron Group Metals with Tungsten from Citrate and Gluconate Solutions: Size Effect of Microhardness, Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 1, p. 7.CrossRefGoogle Scholar
  15. 15.
    Gamburg, Yu.D. and Zangari, G., Theory and Practice of Metal Electrodeposition, New York: Springer, 2011.CrossRefGoogle Scholar
  16. 16.
    Kabanda, A., Sobol’, O.E., Kukushkina, K., Yarlykov, M.M., and Kudryavtsev, V.N., Elektrokhimichesloe povedenie rastvorimukh anodov v tsitranto-ammiachnykh elektrolitakh electroosazhdeniya splava nikel’-volfram (Electrochemical Behavior of Soluble Anodes in Citrate−Ammonia Electrolytes for Electrodeposition of Nickel−Tungsten Alloy), Galvanotekhnika i Obrabokta Poverkhnosti, 1998, no. 3, p. 24.Google Scholar
  17. 17.
    Belevskii, S.S., Buravets, V.A., Yushchenko, S.P., Zgardan, I.M., and Dikusar, A.I., Gel–Chromatographic Separation of Boron−Gluconate Electrolyte for Obtaining Nano-Crystalline Co–W Coatings: Composition and Electrochemical Activity of Components. Part I. Gel-Chromatographic study of electrolyte, separation and composition of components, Surf. Eng. Appl. Electrochem., vol. 52, no. 4, p. 350.Google Scholar
  18. 18.
    Shul’man, A.I., Belevskii, S.S., Yushchenko, S.P., and Dikusar, A.I., Role of Complexation in Forming Composition of Co–W Coatings Electrodeposited from Gluconate Electrolyte, Surf. Eng. Appl. Electrochem., 2014, vol. 50. no. 1, p. 9.Google Scholar
  19. 19.
    Podlaha E.J. and Landolt, D., Induced Codeposition I. An Experimental Investigation of Ni–Mo Alloys, J. Electrochem. Soc., 1996, vol. 143, p. 885.CrossRefGoogle Scholar
  20. 20.
    Podlaha, E.J. and Landolt, D., Induced Codeposition II. A Mathematical Model Describing the Electrodeposition of Ni–Mo Alloys, J. Electrochem. Soc., 1996, vol. 143, p. 893.CrossRefGoogle Scholar
  21. 21.
    Krasikov, V.L., The Role of Intermediate Particles of Electrochemical Reduction of Cobalt in the Formation of Oxygen−Containing Impurities, Bulletin SPbSTI (TU), 2015, no. 31, p. 40.Google Scholar
  22. 22.
    Krasikov, V.L. and Krasikov, A.V., Mechanism of Nickel–Tungsten Alloy Electrodeposition from Pyrophosphate Electrolyte, Bulletin SPbSTI (TU), 2016, no. 36, p. 12.Google Scholar
  23. 23.
    Krasikov, A.V. and Krasikov, V.L., Mechanism for Induced Codeposition of Alloys and Some Single Refractory Metals, Bulletin SPbSTI (TU), 2016, no. 37, p. 8.Google Scholar
  24. 24.
    Belevskii, S.S., Buravets, V.A., Yushcenko, S.P., and Dikusar, A.I., Gel-chromatographic Separation of Boron–Gluconate Electrolyte for Obtaining Nanocrystalline Co–W Coatings: Composition and Electrochemical Activity of Components. Part II. Electrochemical Activity of Separation Products and their Role in the Process of Manufacturing the Alloy, Surf. Eng. Appl. Electrochem., 2016, vo. 52, no. 5, p. 420.Google Scholar
  25. 25.
    Cesiulis, H. and Budreika, A., Electroreduction of Ni(II) and Co(II) from Pyrophosphate Solutions, Materials Sci. (Medziagotuza), 2010, vol. 16, no. 1, p. 52.Google Scholar
  26. 26.
    Krasikov, A.V. and Krasikov, V.L., Mechanism of Cathodic Reduction of Cobalt Pyrophosphate Complex, Russ. J. Appl. Chem., 2012, vol. 85, p. 736.CrossRefGoogle Scholar
  27. 27.
    Lopez-Estrada, S.A., Alatone-Ordaz, A., and Gutierrez- Granados, S., Ponce-de-Leon, C., and Walsh, F.C., Electrochemical Study of Co(II)/Co(III) on Different Electrode Materials for Energy Storage in Redox Flow Cells, ECS Transactions, 2009, vol. 20, no. 1, p. 237.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Danil’chuk
    • 1
  • S. A. Silkin
    • 1
    • 2
  • A. V. Gotelyak
    • 1
  • V. A. Buravets
    • 3
  • T. F. Mitina
    • 4
  • A. I. Dikusar
    • 1
    • 3
    Email author
  1. 1.Shevchenko Pridnestrovie State UniversityTiraspolMoldova
  2. 2.Kostroma State UniversityKostromaRussia
  3. 3.Institute of Applied PhysicsAcademy of Sciences of MoldovaChişinăuMoldova
  4. 4.Institute of ChemistryAcademy of Sciences of MoldovaChişinăuMoldova

Personalised recommendations