Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 970–978 | Cite as

Computer Simulation of an Electrode of Lithium-Ion Battery: Estimation of Ohmic Losses for Active-Material Grains Covered by a Conducting Film

  • Yu. G. Chirkov
  • V. I. Rostokin
  • A. M. SkundinEmail author
  • T. L. Kulova


The use of active materials with high resistivity in lithium-ion batteries necessitates covering the surface of active particles with electron-conducting films. If this measure is insufficient, then carbon black is added to the electrode active layer. The ohmic losses are assessed by computer simulation of electrode’s active layers with active grains covered by a carbon film. Electrode’s active layer is modeled as a set of equal-sized cubic grains of the active material (covered with a conducting film) and the electrolyte; the grains are randomly distributed throughout the active layer. It is shown how the effective conductivity of the active layer decreases in this case. Furthermore, account is taken of the fact that carbon films represent a set of islets, which results in an additional decrease in the effective conductivity of the active layer. By computer simulations in combination with the percolation theory, it is found how the addition of carbon black can increase the conductivity of electrode’s active layer.


lithium-ion battery ohmic losses porous electrodes computer simulations electron-conducting coatings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Julien, Ch., Mauger, A., Vijh, A., and Zaghib, K., Lithium Batteries. Science and Technology, Heidelberg: Springer, 2016.CrossRefGoogle Scholar
  2. 2.
    Huang, H., Yin, S.C., and Nazar, L.F., Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochem. Solid State Lett., 2001, vol. 4, p. A170.Google Scholar
  3. 3.
    Kostecki, R., Schnyder, B., Alliata, D., Song, X., Kinoshita, K., and Kotz, R., Surface studies of carbon films from pyrolyzed photoresist, Thin Solid Films, 2001. vol. 396. p. 36.Google Scholar
  4. 4.
    Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M., and Armand, M., Electroactivity of natural and synthetic triphylite, J. Power Sources, 2001, vol. 97, p. 503.CrossRefGoogle Scholar
  5. 5.
    Jung, H.-G, Kim, J., Scrosati, B., and Sun, Y.-K., Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries, J. Power Sources, 2011, vol. 196, p. 7763.CrossRefGoogle Scholar
  6. 6.
    Ding, Y., Jiang, Y., Xu, F., Yin, J., Ren, H., Zhuo, Q., Long, Z., and Zhang, P., Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method, Electrochem. Comm., 2010, vol. 12, p. 10.CrossRefGoogle Scholar
  7. 7.
    Huang, Y.-G., Zheng, F.-H., Zhang, X.-H., Li, Q.-Y., and Wang, H.-Q., Effect of carbon coating on cycle performance of LiFePO4/C composite cathodes using Tween80 as carbon source, Electrochim. Acta, 2014, vol. 130, p. 740.CrossRefGoogle Scholar
  8. 8.
    Hong, S. A., Kim, D. H., Chung, K. Y., Chang, W., Yoo, J., and Kim, J., Toward uniform and ultrathin carbon layer coating on lithium iron phosphate using liquid carbon dioxide for enhanced electrochemical performance, J. Power Sources, 2014, vol. 262, p. 219.CrossRefGoogle Scholar
  9. 9.
    Wang, J. and Sun, X., Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries, Energy Environ. Sci., 2012, vol. 5, p. 5163.CrossRefGoogle Scholar
  10. 10.
    Doeff, M.M., Hu, Y., McLarnon, F., and Kostecki, R., Effect of surface carbon structure on the electrochemical performance of LiFePO4, Electrochem. Solid-State Lett., 2003, vol. 6, p. A207.Google Scholar
  11. 11.
    Swain, P., Viji, M., Mocherla, P.S.V., and Sudakar, C., Carbon coating on the current collector and LiFePO4 nanoparticles—Influence of sp2 and sp3-like disordered carbon on the electrochemical properties, J. Power Sources, 2015, vol. 293, p. 613.CrossRefGoogle Scholar
  12. 12.
    Fan, Q., Lei, L., Chen, Y., and Sun, Y., Biotemplated synthesis of LiFePO4/C matrixes for the conductive agent-free cathode of lithium ion batteries, J. Power Sources, 2013, vol. 244, p. 702.CrossRefGoogle Scholar
  13. 13.
    Chen, C.H., Vaughey, J.T., Jansen, A.N., Dees, D.W., Kahaian, A.J., Goacher, T., and Thackeray, M.M., Studies of Mg-substituted Li4–xMgxTi5O12 spinel electrodes (0 < x < 1) for lithium batteries, J. Electrochem. Soc., 2001, vol. 148, p. A102.Google Scholar
  14. 14.
    Prosini, P.P., Mancini, R., Petrucci, L., Contini, V., and Villano, P., Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications, Solid State Ionics, 2001, vol. 144, p. 185.CrossRefGoogle Scholar
  15. 15.
    Wolfenstine, J., Lee, U., and Allen, J.L., Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere, J. Power Sources. 2006, vol. 154, p. 287.Google Scholar
  16. 16.
    Hu, X., Lin, Z., Yang, K., Huai, Y., and Deng, Z., Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction, Electrochim. Acta., 2001, vol. 56, p. 5046.CrossRefGoogle Scholar
  17. 17.
    Chung, S.-Y., Bloking, J.T., and Chiang, Y.-M., Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater., 2002, vol. 1, p. 123.CrossRefGoogle Scholar
  18. 18.
    Yang, X., Xu, Y., Zhang, H., Huang, Y., Jiang, Q., and Zhao, Ch., Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material, Electrochim. Acta, 2013, vol. 114, p. 259.CrossRefGoogle Scholar
  19. 19.
    Yuan, T., Yu, X., Cai, R., Zhou, Y., and Shao, Z., Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance, J. Power Sources, 2010, vol. 195, p. 4997.CrossRefGoogle Scholar
  20. 20.
    Jung, H.-G., Kim, J., Scrosati, and Sun, Y.-K., Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries, J. Power Sources, 2011, vol. 196, p. 7763.Google Scholar
  21. 21.
    Oh, J., Lee, J., Hwang, T., Kim, J.M., Seoung, K.-D., and Piao, Y., Dual layer coating strategy utilizing Ndoped carbon and reduced graphene oxide for highperformance LiFePO4 cathode material, Electrochim. Acta, 2017, vol. 231, p. 85.CrossRefGoogle Scholar
  22. 22.
    Tu, X., Zhou, Y., Tian, X., Song, Y., Deng, Ch., and Zhu, H., Monodisperse LiFePO4 microspheres embedded with well-dispersed nitrogen-doped carbon nanotubes as high-performance positive electrode material for lithium-ion batteries, Electrochim. Acta, 2016, vol. 222, p. 64.CrossRefGoogle Scholar
  23. 23.
    Tao, Sh., Huang, W., Wu, G., Zhu, X., Wang, X., Zhang, M., Wang, Sh., Chu, W., Song, L., and Wu, Z., Performance enhancement of lithium-ion battery with LiFePO4@C/RGO hybrid electrode, Electrochim. Acta, 2014, vol. 144, p. 406.CrossRefGoogle Scholar
  24. 24.
    He, Y.-B., Ning, F., Li, B., Song, Q.-Sh., Lv, W., Du, H., Zhai, D., Su, F., Yang, Q.-H., and Kang, F., Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode, J. Power Sources, 2012, vol. 202, p. 253.CrossRefGoogle Scholar
  25. 25.
    Guo, X., Wang, Ch., Chen, M., Wang, J., and Zheng, J., Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance, J. Power Sources, 2012, vol. 214, p. 107.CrossRefGoogle Scholar
  26. 26.
    Fang, W., Zuo, P., Ma, Y., Cheng, X., Liao, L., and Yin, G., Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery, Electrochim. Acta, 2013, vol. 94, p. 294.CrossRefGoogle Scholar
  27. 27.
    Qin, G., Wu, Q., Zhao, J., Ma, Q., and Wang, Ch., C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries, J. Power Sources, 2014, vol. 248, p. 588.CrossRefGoogle Scholar
  28. 28.
    Miao, C., Bai, P. Jiang, Q., Sun, Sh., and Wang, X., A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery, J. Power Sources, 2014, vol. 246, p. 232.CrossRefGoogle Scholar
  29. 29.
    Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Computer modeling of negative electrode operation in lithium-ion battery: Model of equal-sized grains, galvanostatic discharge mode, calculation of characteristic parameters, Russ. J. Electrochem., 2011, vol. 47, p. 59.CrossRefGoogle Scholar
  30. 30.
    Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Computer modeling of positive electrode operation in lithium-ion battery: Model of equal-sized grains, percolation calculations, Russ. J. Electrochem., 2011, vol. 47, p. 71.CrossRefGoogle Scholar
  31. 31.
    Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Computer simulation of positive electrode operation in lithium-ion battery: Optimization of active mass composition, Russ. J. Electrochem., 2012, vol. 48, p. 895.CrossRefGoogle Scholar
  32. 32.
    Chirkov, Yu.G., Porous electrodes in electrochemical technologies, Al’tern. Energ. Ecol., 2014, no. 9, p. 55 [in Russian].Google Scholar
  33. 33.
    Skundin, A.M., Chirkov, Yu.G., and Rostokin, V.I., Lithium-ion batteries: Computer simulation and problems of capacity dependences on charge/discharge currents, Al’tern. Energ. Ecol., 2014, no. 13, p. 80 [in Russian].Google Scholar
  34. 34.
    Tarasevich, Yu.Yu., Perkolyatsiys: teoriya, prilozheniyz, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2011 [in Russian].Google Scholar
  35. 35.
    Chirkov, Yu.G., The theory of porous electrodes: percolation, calculation of percolation lines, Russ. J. Electrochem., 1999, vol. 35, p. 1281.Google Scholar
  36. 36.
    Kirkpatrick, S., Percolation and conduction, Rev. Mod. Phys., 1973, vol. 45, p. 574.CrossRefGoogle Scholar
  37. 37.
    Stauffer, D., Scaling theory of percolation clusters, Phys. Reports, 1979, vol. 54, p. 1.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. G. Chirkov
    • 1
  • V. I. Rostokin
    • 2
  • A. M. Skundin
    • 1
    Email author
  • T. L. Kulova
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University—Moscow Engineering Physics InstituteMoscowRussia

Personalised recommendations