Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 873–878 | Cite as

Electrochemical Properties of Tetrasubstituted Cobalt Phthalocyanines with Fragments of Benzoic Acid

  • N. M. BerezinaEmail author
  • M. I. Bazanov
  • V. E. Maizlish


The method of cyclic voltammetry is used for the first time to study the electrochemical behavior of cobalt phthalocyanine derivatives with fragments of benzoic acid CoPc(4-O–C6H4COOH)4 and CoPc(4- S–C6H4COOH)4 in an aqueous alkaline solution. Comparative analysis is carried out of the electrochemical behavior and change in the electrocatalytic activity of metal phthalocyanines in the reaction of molecular oxygen electroreduction depending on the functional substitution in the macrocycle molecule. In the case of the CoPc(4-O–C6H4COOH)4 and CoPc(4-S–C6H4COOH)4 compounds, central metal ion oxidation (Co2+ → Co3+) and reduction (Co2+→ Co1+) processes and also two successive one–electron stages of phthalocyanine ligand electroreduction are registered. It is shown that the studied cobalt phthalocyanine derivatives manifest electrocatalytic activity in the process of molecular oxygen electroreduction.


cobalt phthalocyanines electrocatalytic activity molecular oxygen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Phthalocyanines: Properties and Applications, Leznoff, C.C. and Lever, A.B.P., Eds., New York: VCH Publishers, 1989, vol. 1; 1993, vol. 2; 1993, vol. 3; 1996, vol. 4.Google Scholar
  2. 2.
    Berezin, B.D., Koordinatsionnye soedineniya porfirinov and ftalotsianina (Coordination Compounds of Porphyrins and Phthalocyanine), Moscow: Nauka, 1978 [in Russian].Google Scholar
  3. 3.
    Booth, G., Phthalocyanines, Chemistry of Synthetic Dyes, Venkataraman, K., Ed., Academic Press, 1971, vol. 4, p. 241.CrossRefGoogle Scholar
  4. 4.
    Shaposhnikov, G.P., Kulinich, V.P., and Maizlish, V.E., Modifitsirovannye ftalotsianini i ih strukturnye analogi (Modified Phthalocyanines and Their Structural Analogs), Koifman, O.I., Ed., Moscow: Krasand, 2012 [in Russian].Google Scholar
  5. 5.
    Wöhrle, D., Schnurpteil, G., Makarov, S.G., Kazarin, A., and Suvorova, O.N., Practical applications of phthalocyanines–from dyes and pigments to materials for optical, electronic and photo-electronic devices, Macrohererocycles, 2012, vol. 5, no. 3, p. 191.CrossRefGoogle Scholar
  6. 6.
    Filimonov, D.A., Turchaninova, I.V., Bazanov, M.I., and Maizlish, V.E., Study of electrochemical and electrocatalytical properties of series of derivatives of copper phthalocyanine, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, p. 105.Google Scholar
  7. 7.
    Osmieri, L., Monteverde Videla, A.H.A., Ocon, P., and Specchia, S., Kinetics of Oxygen Electroreduction on Me–N–C (Me = Fe, Co, Cu) Catalysts in Acidic Medium: Insights on the Effect of the Transition Metal, J. Phys. Chem. C, 2017, vol. 121, no. 33, p. 17796.Google Scholar
  8. 8.
    Bazanov, M.I., Martynov, N.P., Maizlish, V.E., and Smirnov, R.P., Study of Redox Behavior of Cobalt Phthalocyanine Derivatives on the Electrode Surface in Aqueous Alkaline Solution, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1998, vol. 41, no. 1, p. 78.Google Scholar
  9. 9.
    Bazanov, M.I., Shishkina, O.V., Maizlish, V.E., Smirnov, R.P., Petrov, A.V., Shaposhnikov, G.P., and Gzheydzyak, A., Electrochemical studies of cobaltcontaining phthalocyanine compounds, Russ. J. Electrochem., 1998, vol. 34, no. 8, p. 818.Google Scholar
  10. 10.
    Bazanov, M.I., Balakireva, O.V., Balakirev, A.E., Kurach, M.V., Maizlish, V.E., and Shaposhnikov, G.P., Voltammetry of some cobalt-containing octasubstituted phthalocyanines, Russ. J. Electrochem., 2002, vol. 38, no. 9, p. 1000.CrossRefGoogle Scholar
  11. 11.
    Bazanov, M.I. and Petrov, A.V., Uspehi chimii porfirinov (Advances in Porphyrin Chemistry), vol. 5, Golubchikov, O.A., Ed., St. Petersburg: NII, St. Petersburg State University, 2007, p. 275.Google Scholar
  12. 12.
    Maizlish, V.E., Snegirev, F.P., Shaposhnikov, G.P., Kolesnikova, E.E., and Smirnov, R.P. Synthesis and Physico-Chemical Properties of Carboxy–Substituted Metal Pthalocyanines, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1990, vol. 33, no. 1, p. 70.Google Scholar
  13. 13.
    Kudric, E.V., Smirnov, A.I., Maizlish, V.E., Tararykina, T.V., Shaposhnikov, G.P., and Usoltseva, N.V., Synthesis and Liquid Crystalline Properties of Copper 2,9(10),16(17),23(24)-and 1,8(11),15(18),22(25)-Tetra(4-Carboxyphenoxy)Phthalocyanines, and Their Esters, Izv. AN Ser. Khimich., 2006, vol. 6, no. 1, p. 991.Google Scholar
  14. 14.
    Mayranovskiy, V.G. Electrochemistry of Porphyrins, in Porfiriny: spektroskopiya, elektrokhimiya, primeneniye (Porphyrins: Spectroscopy, Eletcrochemistry, Application), Yenikolopyan, N.S., Ed., Moscow: Nauka, 1987, p. 127.Google Scholar
  15. 15.
    Kadish, K.M., Caemelbecke, E.V., Royal, G., Electrochemistry of Metalloporpyrins in Nonaqueous Media, in The Porphyrin Handbook, Kadish, K.M., Eds., SanDiego: Academic Press, 2000, vol. 8, Chap. 55, pp. 1–114.Google Scholar
  16. 16.
    Tarasevich, M.R., Radyushkina, K.A., and Bogdanovskaya, V.A., Elektrokhimiya porfirinov (Electrochemistry of Porphyrins), Moscow: Nauka, 1991.Google Scholar
  17. 17.
    Tesakova, M.V., Noskov, A.V., Bazanov, M.I., Berezina, N.M., and Parfenyuk, V.I., Kinetic parameters of the electroreduction of oxygen on a graphitized carbon electrode activated by tetrakis(4-methoxyphenyl)porphyrin and its cobalt complexes, Russ. J. Phys. Chem. A, 2012, vol. 86, no. 1, p. 9.CrossRefGoogle Scholar
  18. 18.
    Bazanov, M.I., Filimonov, D.A., Volkov, A.V., and Koyfman, O.I., Makrogeretsiklicheskiye soyedineniya: Elektrokhimiya, elektrokataliz, termokhimiya (Macroheterocyclic Compounds: Electrochemistry, Electrocatalysis, Thermochemistry), Moscow: Lenand, 2016.Google Scholar
  19. 19.
    Do, N.M., Berezina, N.M., Bazanov, M.I., Gyseinov, S.S., Berezin, M.B., and Koifman, O.I. Electrochemical behavior of a number of bispyridyl-substituted porphyrins and their electrocatalytic activity in molecular oxygen reduction reaction, J. Porphyrins Phthalocyanines, 2016, vol. 20, no. 5, p. 615.CrossRefGoogle Scholar
  20. 20.
    Bazanov, M.I., Petrov, A.V., Zhutaeva, G.V., Turchaninova, I.V., Andrievski, G., and Evseev, A.A., Electrocatalytic activity of macroheterocyclic complexes in the molecular oxygen electroreduction: A cyclic voltammetry estimate, Russ. J. Electrochem., 2004, vol. 40, no. 11, p. 1198.CrossRefGoogle Scholar
  21. 21.
    Koca, A., Dincer, H.A., Kocak, M.B., and Gui, A., Electrochemical characterization of Co(II) and Pd(II) phthalocyanines carrying diethoxymalonyl and carboxymethyl substituents, Russ. J. Electrochemistry, 2006, vol. 42, no. 1, p. 31.CrossRefGoogle Scholar
  22. 22.
    Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 1979, vol. 101, p. 19.CrossRefGoogle Scholar
  23. 23.
    Davis, R.E., Horvath, G.L., and Tobias, C.W., The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions, Electrochim. Acta, 1967, vol. 12, p. 287.CrossRefGoogle Scholar
  24. 24.
    Beck, F. The redox mechanism of the chelate-catalysed oxygen cathode, J. Appl. Electrochem., 1977, vol. 7, p. 239.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. M. Berezina
    • 1
    Email author
  • M. I. Bazanov
    • 1
  • V. E. Maizlish
    • 1
  1. 1.Ivanovo State University of Chemistry and Technology, Research Institute of Macroheterocyclic CompoundsIvanovoRussia

Personalised recommendations