Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 1031–1044 | Cite as

Software and Instrumentational Methods of Enhancing the Resolution in Electrochemical Noise Measurements

  • E. A. AstafevEmail author


Several methods of enhancing the signal-to-noise ratio for instrumentation designed to measure electrochemical noise are practically tested. The experiments are carried out using model RC-circuits and lielectrolyte electrochemical cells. Strong limitations in the tested objects’ impedance values are found due to the input current noise of the instrumentation, especially during the parallel connection of several channels. The advantages of a two-channel scheme for automatically compensating the instrument’s self noise are demonstrated. Different methods of lowering the dispersion of the frequency dependences of the spectral power density of electrochemical noise are compared. It is shown that averaging over segments with an overlap is the most effective method but averaging over frequencies can lead to large distortions when investigating electrochemical systems.


electrochemical noise detrending power spectral density electrochemical impedance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tyagai, V.A. and Luk’yanchikova, N.B., Equilibrium fluctuations in electrochemical processes, Elektrokhimiya (in Russian), 1967, vol. 3, p. 316.Google Scholar
  2. 2.
    Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya (in Russian), 1974, vol. 10, p. 3.Google Scholar
  3. 3.
    Tyagai, V.A., Faradaic noise of complex electrochemical reactions, Electrochim. Acta, 1971, vol. 16, p. 1647.CrossRefGoogle Scholar
  4. 4.
    Cottis, R.A., Interpretation of electrochemical noise data, Corrosion, 2001, vol. 57, no. 3, p. 265.CrossRefGoogle Scholar
  5. 5.
    Jamali, S.S. and Mills, D.J., A critical review of electrochemical noise measurement as a tool forevaluation of organic coatings, Prog. Org. Coat., 2016, vol. 95, p. 26.CrossRefGoogle Scholar
  6. 6.
    Klyuev, A.L., Davydov, A.D., Grafov, B.M., Dobrovolskii, Yu. A., Ukshe, A.E., and Astaf’ev, E.A., Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum, Russ. J. Electrochem., 2016, vol. 52, p. 1001.CrossRefGoogle Scholar
  7. 7.
    Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357.CrossRefGoogle Scholar
  8. 8.
    Legros, B., Thivel, P.-X., Bultel, Y., and Nogueira, R.P., First results on PEMFC diagnosis by electrochemical noise, Electrochem. Comm., 2011, vol. 13, p. 1514.CrossRefGoogle Scholar
  9. 9.
    Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lakeev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742.CrossRefGoogle Scholar
  10. 10.
    Al-Mazeedi, H.A.A. and Cottis, R.A., A practical evaluation of electrochemical noise parameters as indicators of corrosion type, Electrochim. Acta, 2004, vol. 49, p. 2787.CrossRefGoogle Scholar
  11. 11.
    Hoseinieh, S.M., Homborg, A.M., Shahrabi, T., Mol, J.M.C., and Ramezanzadeh, B., A novel approach for the evaluation of under deposit corrosion in marine environments using combined analysis by electrochemical impedance spectroscopy and electrochemical noise, Electrochim. Acta, 2016, vol. 217, p. 226.CrossRefGoogle Scholar
  12. 12.
    Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 2803.CrossRefGoogle Scholar
  13. 13.
    Astafev, E.A., Ukshe, A.E., Gerasimova, E.V., Dobrovolsky, Yu.A., and Manzhos, R.A., Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads, J. Solid State Electrochem., 2018. doi 10.1007/s10008-018-3892-4Google Scholar
  14. 14.
    Astaf’ev, E.A., Ukshe, A.E., and Dobrovolskii, Yu.A., Hardware for measurement of electrochemical noise of chemical power sources, Pribory i Tekhnika Eksperimenta (in Russian), 2017, no. 6, p. 130.]Google Scholar
  15. 15.
    Astaf’ev, E.A. and Manzhos, R.A., Wide dynamic range hardware for electrochemical noise measurement, Pribory i Tekhnika Eksperimenta (in Russian), 2018, no. 1, p. 149.Google Scholar
  16. 16.
    Astaf’ev, E.A., Universal instrument with high resolution for electrochemical noise measurement, Pribory i Tekhnika Eksperimenta (in Russian), 2018, no. 1, p. 151.Google Scholar
  17. 17.
    Abaturov, M.A., Kanevskii, L.S., Microprocessor-free measurement complex for investigation of electrochemical noise characteristics of chemical power sources, Electrohimicheskaya Energetica (in Russian), 2008, vol. 8, no. 4, p. 222.Google Scholar
  18. 18.
    Bosch, R.-W., Cottis, R., Csecs, K., Dorsch, T., Dunbar, L., Heyn, A., Huet, F., Hyökyvirta, O., Kerner, Z., Kobzova, A., Macak, J., Novotny, R., Öijerholm, J., Piippo, J., Richner, R., Ritter, S., Sánchez-Amaya, J.M., Somogyi, A., Väisänen, S., and Zhang, W., Reliability of electrochemical noise measurements: Results of round-robin testing on electrochemical noise, Electrochim. Acta, 2014, vol. 120, p. 379.Google Scholar
  19. 19.
    Evdokimov, Yu.K., Denisov, E.S., and Martemianov, S.A., Electrical noise of hydrogen fuel cell and diagnostic characteristic research, Nonlinear World, 2009, vol. 7, p. 706.Google Scholar
  20. 20.
    Denisov, E.S., Evdokimov, Yu.K., Martemianov, S., Thomas, A., and Adiutantov, N., Electrochemical noise as a diagnostic tool for PEMFC, Fuel Cells, 2017, vol. 17, p. 225.CrossRefGoogle Scholar
  21. 21.
    Legros, B., Thivel, P.X., Bultel, Y., and Nogueira, R.P., First results on PEMFC diagnosis by electrochemical noise, Electrochem. Commun. 2011, vol. 13, p. 1514.Google Scholar
  22. 22.
    Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise, J. Power Sources, 2017, vol. 342, p. 553.CrossRefGoogle Scholar
  23. 23.
    Bertocci, U., Huet, F., Nogueira, R.P., and Rousseau, P., Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, vol. 58, p. 337.CrossRefGoogle Scholar
  24. 24.
    Homborg, A.M., Tinga, T., Zhang, X., van Westing, E.P.M., Oonincx, P.J., de Wit, J.H.W., and Mol, J.M.C., Time–frequency methods for trend removal in electrochemical noise data, Electrochim. Acta, 2012, vol. 70, p. 199.Google Scholar
  25. 25.
    Mansfeld, F., Sun, Z., Hsu, C.H., and Nagiub, A., Concerning trend removal in electrochemical noise measurements, Corr. Sci., 2001, vol. 43, p. 341.CrossRefGoogle Scholar
  26. 26.
    Xia D.-H., and Behnamian Y., Electrochemical noise: A review of experimental setup, instrumentation and DC removal, Russ. J. Electrochem., 2015, vol. 51, p. 593.CrossRefGoogle Scholar
  27. 27.
    Nyquist, H., Thermal agitation of electric charge in conductors, Phys. Rev., 1928, vol. 32, p. 110.CrossRefGoogle Scholar
  28. 28.
    Marple, S.L., Digital spectral Analysis, New Jersey: Prentice-Hall, 1987.Google Scholar
  29. 29.
    Astafev, E.A., Ukshe, A.E., Leonova, L.S., Manzhos, R.A., and Dobrovolsky, Yu.A., Drift removal and processing features in electrochemical noise analysis, Russ. J. Electrochem., 2018, vol. 54 (submitted). doi 10.1134/S0424857018120034Google Scholar
  30. 30.
    Mansfeld, F., Han, L.T., Lee, C.C., Chen, C., Zhang, G., and Xiao, H., Analysis of electrochemical impedance and noise data for polymer coated metals, Corros. Sci., 1997, vol. 39, p. 255.CrossRefGoogle Scholar
  31. 31.
    Lee, C. and Mansfeld, F., Analysis of electrochemical noise data for a passive system in the frequency domain, Corros. Sci., 1998, vol. 40, p. 959.CrossRefGoogle Scholar
  32. 32.
    Kanevskii, L.S. and Grafov, B.M., Dynamics of lithium electrode passivation in aprotic organic electrolytes, studied by electrochemical noise method, Russ. J. Electrochem., 2008, vol. 44, p. 570.CrossRefGoogle Scholar
  33. 33.
    Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., Measurement of electrochemical noise of a Li/MnO2 primary lithium battery, J. Solid State Electrochem., 2018. doi 10.1007/s10008-018-4074-0Google Scholar
  34. 34.
    Astafev, E.A., Electrochemical noise measurement of a Li/SOCl2 primary battery, J. Solid State Electrochem., 2018. doi 10.1007/s10008-018-4067-zGoogle Scholar
  35. 35.
    Timashev, S.F. and Polyakov, Yu.S., Review of Flicker noise spectroscopy in electrochemistry, Fluct. Noise Lett., 2007, vol. 7, p. R15.Google Scholar
  36. 36.
    Timashev, S.F., Flicker noise spectroscopy and its application: information hidden in chaotic signals (Review), Russ. J. Electrochem., 2006, vol. 45, p. 424.CrossRefGoogle Scholar
  37. 37.
    Grafov, B.M., Klyuev, A.L., Davydov, A.D., Dobrovolskii, Y.A., Ukshe, A.E., and Astaf’ev, E.A., Median Chebyshev spectroscopy of electrochemical noise, J. Solid State Electrochem., 2017, vol. 21, p. 915.CrossRefGoogle Scholar
  38. 38.
    Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Electrochemical noise diagnostics: Analysis of algorithm of orthogonal expansions, Russ. J. Electrochem., 2015, vol. 51, p. 503.CrossRefGoogle Scholar
  39. 39.
    Dubasova, V.S., Fialkov, A.S., Mikhailova, V.A., Nikolenko, A.F., Ponomareva, T.A., Zaichikov, S.G., Baver, A.I., Smirnova, T.Yu., and Kanevskii, L.S., Electrochemical characteristics of the negative electrode in lithium-ion batteries: effect of structure and surface properties of the carbon material, Russ. J. Electrochem., 2004, vol. 40, p. 369.CrossRefGoogle Scholar
  40. 40.
    Kanevskii, L.S., Grafov, B.M., and Astaf’ev, M.G., Dynamics of electrochemical noise of the lithium electrode in aprotic organic electrolytes, Russ. J. Electrochem., 2005, vol. 41, p. 1091.CrossRefGoogle Scholar
  41. 41.
    Aurbach, D., Markovsky, B., Levi, M.D., Levi, E., Schechter, A., Moshkovich, M., and Cohen, Y., New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries, J. Power Sources, 1999, vol. 81–82, p. 95.Google Scholar
  42. 42.
    Martemianov, S., Maillard, F., Thomas, A., Lagonotte, P., and Madier, L., Noise diagnosis of commercial Li-ion batteries using high-order moments, Russ. J. Electrochem., 2005, vol. 41, p. 1091.CrossRefGoogle Scholar
  43. 43.
    Elkin, V.V., Grafov, B.M., Nekrasov, L.N., Khomchenko, T.N., and Alekseev, V.N., Turbulent electrochemical noise: A theoretical analysis in the frequencypotential coordinates, Russ. J. Electrochem., 2002, vol. 38, p. 199.CrossRefGoogle Scholar
  44. 44.
    Nekrasov, L.N., Grafov, B.M., Elkin, V.V., Khomchenko, T.N., and Martem’yanov, S.A., Analysis of turbulent noise spectra of electrochemical reactions in different experimental conditions, Russ. J. Electrochem., 2002, vol. 38, p. 467.CrossRefGoogle Scholar
  45. 45.
    Ritter, S., Huet F., and Cottis, R.A., Guideline for an assessment of electrochemical noise measurement devices, Mater. Corros., 2012, vol. 63, p. 297.CrossRefGoogle Scholar
  46. 46.
    Epelboin, I., Gabrielli, C., Keddam, M., Raillon, L., Study of potentiostat noise, J. Electroanal. Chem., 1978, vol. 93, p. 155.CrossRefGoogle Scholar
  47. 47.
    Bertocci, U., Applications of a low noise potentiostat in electrochemical measurements, J. Electrochem. Soc., 1980, vol. 127, p. 1931.CrossRefGoogle Scholar
  48. 48.
    Fang, T., McGrath, M., Diamond, D., and Smyth, M.R., Development of a computer controlled multichannel potentiostat for applications with flowing solution analysis, Anal. Chim. Acta, 1995, vol. 305, p. 347.CrossRefGoogle Scholar
  49. 49.
    Kerzenmacher, S., Mutschler, K., Kraling, U., Baumer, H., Ducree, J., Zengerle, R., and von Stetten, F., A complete testing environment for the automated parallel performance characterization of biofuel cells: design, validation, and application, J. Appl. Electrochem., 2009, vol. 39, p. 1477.CrossRefGoogle Scholar
  50. 50.
    Astafev, E.A., Shkerin, S.N., Instruments for electrochemical impedance measurement: price–quality–functionality ratio, Alternativnaya energetica i ecologiya (in Russian), 2008, no. 2, p. 148.Google Scholar
  51. 51.
    Mochalov, S.E., Nurgaliev, A.R., Antipin, A.V., Kuz’mina, E.V., and Kolosnitsyn, V.S., Electrochemical heat flow calorimeter, Russ. J. Electrochem., 2016, vol. 52, p. 449.CrossRefGoogle Scholar
  52. 52.
    Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357.CrossRefGoogle Scholar
  53. 53.
    Scandurra, G., Giusi, G., and Ciofi, C., Multichannel amplifier topologies for high-sensitivity and reduced measurement time in voltage noise measurements, IEEE Trans. Instrum. Meas., 2013, vol. 62, p. 1145.CrossRefGoogle Scholar
  54. 54.
    Blanc, G., Gabrielli, C., and Keddam, M., Measurement of electrochemical noise by a cross correlation method, Electrochim. Acta, 1975, vol. 20, p. 687.CrossRefGoogle Scholar
  55. 55.
    Van der Ziel, A., Noise: Sources, Characterization, Measurement, Englewood Cliffs, NJ: Prentice-Hall, 1970, p. 54.Google Scholar
  56. 56.
    Ciofi, C., Crupi, F., and Pace, C., A new method for high-sensitivity noise measurements, IEEE Trans. Instrum. Meas., 2002, vol. 51, no. 4, p. 656.CrossRefGoogle Scholar
  57. 57.
    Sampietro, M., Accomando, G., Fasoli, L.G., Ferrari, G., and Gatti, E.C., High sensitivity noise measurement with a correlation spectrum analyzer, IEEE Trans. Instrum. Meas., 2000, vol. 49, p. 820.CrossRefGoogle Scholar
  58. 58.
    Homborg, A.M., Tinga, T., van Westing, E.P.M., Zhang, Z., Ferrari, G.M., de Wit, J.H.W., and Mol, J.M.C., A critical appraisal of the interpretation of electrochemical noise for corrosion studies, Corrosion, 2014, vol. 70, p. 971.Google Scholar
  59. 59.
    Rubio, M.A., Bethune, K., Urquia, A., and St-Pierre, J., Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise, Int. J. Hydrogen Energy, 2016, vol. 41, p. 14991.CrossRefGoogle Scholar
  60. 60.
    Bartlett, M.S., Smoothing periodograms from timeseries with continuous spectra, Nature, 1948, vol. 161, p. 686.CrossRefGoogle Scholar
  61. 61.
    Welch, P.D., The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust., 1967, vol. 15, p. 70.CrossRefGoogle Scholar
  62. 62.
    Cottis, R.A., Homborg, A.M., and Mol, J.M.C., The relationship between spectral and wavelet techniques for noise analysis, Electrochim. Acta, 2016, vol. 202, p. 277.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations