Russian Journal of Electrochemistry

, Volume 54, Issue 12, pp 1096–1103 | Cite as

The Kinetics of Indium Electroreduction from Chloride Solutions

  • Kh. AvchukirEmail author
  • B. D. Burkitbayeva
  • A. M. Argimbayeva
  • G. S. Rakhymbay
  • G. S. Beisenova
  • M. K. Nauryzbayev


The electroreduction of indium on indium electrode (99.98%) in perchlorate-containing chloride electrolytes is studied by the methods of linear sweep and cyclic voltammetry, impedance spectroscopy, and chronoamperometry. The indium electroreduction is limited by diffusion, the reaction rate constant is 1.3 10–4 cm/s at the indium salt concentration of 0.1 M. The values of the apparent rate constant for the charge transfer stage found by linear sweep and cyclic voltammetry and also by impedance spectroscopy are 2.37 × 10–3, 3.62 × 10–3, 3.06 × 10–3 cm/s, respectively. The values of diffusion coefficient of indium(III) ions calculated according to the Cottrell equation based on chronoamperametric measurements and from the Warburg impedance found by impedance spectroscopy are in good agreement. The presence of the Gerischer impedance is stated, which suggests that a homogeneous reaction of formation of indium chloride complexes proceeds and its mechanism is chemical-electrochemical.


indium electroreduction mass transfer charge transfer diffusion coefficient rate constant voltammetry impedance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Te, P., YuYing, C., Sihzih, C., and Shuehlin, Y., In situ scanning tunneling microscopy of electrodeposition of indium on a copper thin film electrode predeposited on Pt(111) electrode, J. Phys. Chem. C, 2013, vol. 117, p. 26659. doi 10.1021/JP4095968CrossRefGoogle Scholar
  2. 2.
    Yonghwa, C. and Chi-Woo, L., Nucleation process of indium on a copper electrode, J. Electrochem. Sci. Technol., 2013, vol. 4, p. 93. doi 10.5229/JECST.2013.4.3.93CrossRefGoogle Scholar
  3. 3.
    Munoz, A.G., Saidman, S.B., and Bessone, J.B., Electrodeposition of indium onto vitreous carbon from acid chloride solutions, J. Electrochem. Soc., 1999, vol. 146, p. 2123. doi 10.1149/1.1391902CrossRefGoogle Scholar
  4. 4.
    Saidman, S.B., García, S.G., and Bessone, J.B., Electrochemical behaviour of Al-In alloys in chloride solutions, J. Appl. Electrochem., 1995, vol. 25, p. 252. doi 10.1007/BF00262964CrossRefGoogle Scholar
  5. 5.
    Breslin, C.B. and Carroll, W.M., The activation of aluminium by indium ions in chloride, bromide and iodide solutions, Corros. Sci., 1993, vol. 34, p. 327. doi 10.1016/0010-938X(93)90010-ECrossRefGoogle Scholar
  6. 6.
    Saidman, S.B. and Bessone, J.B., Activation of aluminium by indium ions in chloride solutions, Electrochim. Acta, 1997, vol. 42, p. 413. doi 10.1016/S0013-4686(96)00236-8CrossRefGoogle Scholar
  7. 7.
    Piercy, R. and Hampson, N.A., The indium electrode in chloride electrolytes, a kinetic study, J. Electroanal. Chem, 1975, vol. 59, p. 261. doi 10.1016/S0022-0728(75)80181-1CrossRefGoogle Scholar
  8. 8.
    Rakhymbay, G.S., Nauryzbayev, M.K., Burkitbayeva, B.D., Argimbaeva, A.M., Jumanova, R., Kurbatov, P., Eyraud, M., Knauth, P., and Vacandio, F., Electrochemical deposition of indium: nucleation mode and diffusional limitation, Russ. J. Electrochem., 2016, vol. 52, p. 99. doi 10.1134/S1023193516020087CrossRefGoogle Scholar
  9. 9.
    Burkitbayeva, B.D., Argimbaeva, A.M., Rakhymbay, G.S., Beysenova, G.S., Avchukir, K., Kurbatov, A.P., and Nauryzbayev, M.K., A study of the electrochemical behavior of indium on a titanium electrode by cyclic voltammetry method, Khim. Zh. Kazakhstana, 2015, vol. 51, no. 3, p. 34.Google Scholar
  10. 10.
    Kozin, V.F., Sheka, I.A., and Belinskii, V.N., Studies of acidity of near-electrode layers at indium electrodeposition, Ukr. Khim. Zh., 1983, vol. 49, no. 2, p. 148.Google Scholar
  11. 11.
    Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, KolosS, 2006.Google Scholar
  12. 12.
    Gonzalez-Buch, C., Herraiz-Cardona, I.M, Ortega, E., Mestre, S., and Perez-Herranz, V., Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis, Int. J. Hydrogen Energy, 2016, vol. 41, p. 764. doi 10.1016/j.ijhydene.2015.10.142CrossRefGoogle Scholar
  13. 13.
    Xu, C., Zhou, J., Zeng, M., Fu, X., Liu, X., and Li, J., Electrodeposition mechanism and characterization of Ni-Mo alloy and its electrocatalytic performance for hydrogen evolution, Int. J. Hydrogen Energy, 2016, vol. 41, p. 13341. doi 10.1016/j.ijhydene.2016.06.205CrossRefGoogle Scholar
  14. 14.
    Jovic, B.M., Lacnjevac, U.C., Jovic, V.D., and Krstajic, N.V., Kinetics of the oxygen evolution reaction on NiSn electrodes in alkaline solutions, J. Electroanal. Chem., 2015, vol. 754, p. 100. doi 10.1016/j.jelechem. 2015.07.013CrossRefGoogle Scholar
  15. 15.
    Pettit, C.M., Garland, J.E., Etukudo, N.R., Assiongbon, K.A., Emery, S.B., and Roy, D., Electrodeposition of indium on molybdenum studied with optical second harmonic generation and electrochemical impedance spectroscopy, Appl. Surf. Sci., 2002, vol. 202, p. 33. doi 10.1016/S0169-4332(02)00798-5CrossRefGoogle Scholar
  16. 16.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley-VCH, 2001.Google Scholar
  17. 17.
    Damaskin, B.B. and Petrii, O.A., Vvedenie v Elektrokhmicheskuyu Kinetiku (Introduction to electrochemical kinetics), Moscow: Vysshaya Shkola, 1975.Google Scholar
  18. 18.
    Kravtsov, V.I., Kinetics and mechanism of electrode reactions of metal complexes in aqueous solutions of electrolytes, Usp. Khim., 1976, vol. 45, p. 284.CrossRefGoogle Scholar
  19. 19.
    Protsenko, V.S., Kityk, A.A., and Danilov, F.I., Voltammetry study of Cr(III)/Cr(II) system in aqueous methanesulfonate solutions, J. Electroanal. Chem., 2011, vol. 661, p. 213. doi 10.1016/j.jelechem.2011.08.003CrossRefGoogle Scholar
  20. 20.
    Kityk, A.A., Protsenko, V.S., and Danilov, F.I., Voltammetry study of Cr(III)/Cr(II) system in methanesulfonate and sulfate solutions: Temperature dependences, J. Electroanal. Chem., 2012, vol. 689, p. 269. doi 10.1016/j.jelechem.2011.08.003CrossRefGoogle Scholar
  21. 21.
    Kozin, V.F. and Omel’chuk, A.A., Kinetics and mechanism of the formation of monovalent indium ions in the system In0–In2(SO4)3–In2SO4, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2006, vol. 2, no. 2, p. 45.Google Scholar
  22. 22.
    Kozin, V.F., Formation of monovalent indium ions in concentrated solutions of the system In0–InCl3–CaCl2, Ukr. Khim. Zh., 1995, vol. 61, no. 9, p. 3.Google Scholar
  23. 23.
    Nazmutdinov, R.R., Shapnik, M.S., and Malyucheva, O.I., Reduction pathways of indium ions—multistep discharge or disproportionation, Russ. J. Electrochem., 1993, vol. 29, p. 428.Google Scholar
  24. 24.
    Miomandre, F., Sadki, S., Audebert P., and Meallet-Renault, R., L’Electrochimie, Dunod, 2005 (translated into Russian).Google Scholar
  25. 25.
    Galus, Z., Fundamentals of Electrochemical Analysis, New York: Harwood, 1976.Google Scholar
  26. 26.
    Delahay, P., Theory of irreversible waves in oscillographic polarography, J. Amer. Chem. Soc., 1953, vol. 75, p. 1190.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Kh. Avchukir
    • 1
    Email author
  • B. D. Burkitbayeva
    • 1
  • A. M. Argimbayeva
    • 1
  • G. S. Rakhymbay
    • 1
  • G. S. Beisenova
    • 1
  • M. K. Nauryzbayev
    • 1
  1. 1.Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical TechnologyAl-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations