Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 809–816 | Cite as

Composition-Controllable AuPt Alloy Catalysts for Electrooxidation of Formic Acid

  • Wen-Jin Shen
  • Ji-Long Sang
  • Ling Cai
  • Yong-Jun LiEmail author


AuPt alloy catalysts with various compositions have been successfully prepared simply by one-step co-reduction of Au and Pt precursors involving sodium citrate as stabilizer and reductant. XRD, TEM and EDX element mapping analysis confirmed that the resulting AuPt nanoparticles are single-phase alloys rather than random mixtures of tiny Au and Pt particles. Compared with Pt/C, alloying Au with Pt can effectively alter the kinetic process of formic acid oxidation, reducing the generation of CO-like intermediates. Au81Pt19 displays superior electrocatalytic activity and durability, ~11 times in the mass activity better than commercial Pt/C and may be of practical significance for the commercialization of direct formic acid fuel cell.


AuPt alloy nanoparticle controllable composition formic acid electrooxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uhm, S., Lee, H.J., Kwon, Y., and Lee, J., A stable and cost-effective anode catalyst structure for formic acid fuel cells, Angew. Chem., Int. Ed., 2008, vol. 47, p. 10163.CrossRefGoogle Scholar
  2. 2.
    Zhang, H.X., Wang, C., Wang, J.Y., Zhai, J.J., and Cai, W.B., Carbon-supported Pd−Pt nanoalloy with low Pt content and superior catalysis for formic acid electro-oxidation, J. Phys. Chem. C, 2010, vol. 114, p. 6446.CrossRefGoogle Scholar
  3. 3.
    Osawa, M., Komatsu, K., Samjeske, G., Uchida, T., Ikeshoji, T., Cuesta, A., and Gutierrez, C., The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum, Angew. Chem., Int. Ed., 2011, vol. 50, p. 1159.CrossRefGoogle Scholar
  4. 4.
    Miki, A., Ye, S., and Osawa, M., Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions, Chem. Commun., 2002, p. 1500.Google Scholar
  5. 5.
    John, J., Wang, H., Rus, E.D., and Abruña, H.D., Mechanistic studies of formate oxidation on platinum in alkaline medium, J. Phys. Chem. C, 2012, vol. 116, p. 5810.CrossRefGoogle Scholar
  6. 6.
    Chen, Y.X., Heinen, M., Jusys, Z., and Behm, R.J., Kinetics and mechanism of the electrooxidation of formic acid—spectroelectrochemical studies in a flow cell, Angew. Chem., Int. Ed., 2006, vol. 45, p. 981.CrossRefGoogle Scholar
  7. 7.
    Habas, S.E., Lee, H., Radmilovic, V., Somorjai, G.A., and Yang, P., Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater., 2007, vol. 6, p. 692.CrossRefGoogle Scholar
  8. 8.
    Yu, Y., Hu, Y., Liu, X. Deng, W., and Wang, X., The study of Pt@Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement, Electrochim. Acta, 2009, vol. 54, p. 3092.CrossRefGoogle Scholar
  9. 9.
    Podlovchenko, B.I., Maksimov, Y.M., and Maslakov, K.I., Electrocatalytic properties of Au electrodes decorated with Ptsubmonolayers by galvanic displacement of copper adatoms, Electrochim. Acta, 2014, vol. 130, p. 351.CrossRefGoogle Scholar
  10. 10.
    Jiang, Z. and Jiang, Z.-J., Improvements of electrocatalytic activity of PtRu nanoparticles on multi-walled carbon nanotubes by a H2 plasma treatment in methanol and formic acid oxidation, Electrochim. Acta, 2011, vol. 56, p. 8662.CrossRefGoogle Scholar
  11. 11.
    Lee, H., Habas, S.E., Somorjai, G.A., and Yang, P., Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid, J. Am. Chem. Soc., 2008, vol. 130, p. 5406.CrossRefGoogle Scholar
  12. 12.
    Zhou, L.-N., Zhang, X.-T., Wang, Z.-H., Guo, S., and Li, Y.-J., Cubic superstructures composed of PtPd alloy nanocubes and their enhanced electrocatalysis for methanol oxidation, Chem. Commun., 2016, vol. 52, p. 12737.CrossRefGoogle Scholar
  13. 13.
    Uhm, S., Chung, S.T., and Lee, J., Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell, Electrochem. Commun., 2007, vol. 9, p. 2027.CrossRefGoogle Scholar
  14. 14.
    Lee, J.K., Jeon, H., Uhm, S., and Lee, J., Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells, Electrochim. Acta, 2008, vol. 53, p. 6089.CrossRefGoogle Scholar
  15. 15.
    Melke, J., Schoekel, A., Dixon, D., Cremers, C., Ramaker, D.E., and Roth, C., Ethanol oxidation on carbon-supported Pt, PtRu, and PtSn catalysts studied by Operando X-ray absorption spectroscopy, J. Phys. Chem. C, 2010, vol. 114, p. 5914.Google Scholar
  16. 16.
    Casado-Rivera, E., Volpe, D.J., Alden, L., Lind, C., Downie, C., Vázquez-Alvarez, T., Angelo, A.C., Disalvo, F.J., and Abruña, H.D., Electrocatalytic activity of ordered intermetallic phases for fuel cell applications, J. Am. Chem. Soc., 2004, vol. 126, p. 4043.CrossRefGoogle Scholar
  17. 17.
    Zhang, X.-T., Zhou, L.-N., Shen, Y.-Y., Liu, H.-T., and Li, Y.-J., Superior electrocatalytic activity of ultrathin PtPdBi nanowires towards ethanol electrooxidation, RSC Adv., 2016, vol. 6, p. 58336.CrossRefGoogle Scholar
  18. 18.
    Zhao, Y., Ye, C., Liu, W., Chen, R., and Jiang, X., Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application, Angew. Chem., Int. Ed., 2014, vol. 53, p. 8127.Google Scholar
  19. 19.
    Gan, Q.-M., Tao, L., Zhou, L.-N., Zhang, X.-T., Wang, S., and Li, Y.-J., Directional coalescence growth of ultralong Au93Pt7alloy nanowires and their superior electrocatalytic performance in ethanol oxidation, Chem. Commun., 2016, vol. 52, p. 5164.CrossRefGoogle Scholar
  20. 20.
    Choi, J.-H., Jeong, K.-J., Dong, Y., Hanb, J., Limb, T.-H., Lee, J.-S., and Sung, Y.-E., Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells, J. Power Sources, 2008, vol. 185, p. 857.CrossRefGoogle Scholar
  21. 21.
    Choi, J.-H., Jeong, K.-J., Dong, Y., Han, J., Lim, T.-H., Lee, J.-S., Sung, and Y.-E., Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells, J. Power Sources, 2006, vol. 163, p. 71.Google Scholar
  22. 22.
    Yong, Q., Wang, C., and Le, Z.G., Decorating graphene sheets with Pt nanoparticles using sodium citrate as reductant, Appl. Surf. Sci., 2011, vol. 257, p. 10758.CrossRefGoogle Scholar
  23. 23.
    Vega, A.A. and Newman, R.C., Nanoporous metals fabricated through electrochemical dealloying of Ag–Au–Pt with systematic variation of Au:Pt ratio, J. Electrochem. Soc., 2014, vol. 161, p. C1.Google Scholar
  24. 24.
    Jin, H.-J., Wang, X.-L., Parida, S., Wang, K., Seo, M., and Weissmüller, J., Nanoporous Au−Pt alloys as large strain electrochemical actuators, Nano Lett., 2010, vol. 10, p. 187.CrossRefGoogle Scholar
  25. 25.
    Xu, J., Zhang, C., Wang, X., Ji, H., Zhao, C., Wang, Y., and Zhang, Z., Fabrication of bi-modal nanoporous bimetallic Pt-Au alloy with excellent electrocatalytic performance towards formic acidoxidation, Green Chem., 2011, vol. 13, p. 1914.CrossRefGoogle Scholar
  26. 26.
    Li, D., Meng, F., Wang, H., Jiang, X., and Zhu, Y., Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards for mic acid electro-oxidation, Electrochim. Acta, 2016, vol. 190, p. 852.CrossRefGoogle Scholar
  27. 27.
    Xu, J.B., Zhao, T.S., and Liang, Z.X., Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells, J. Power Sources, 2008, vol. 185, p. 857.CrossRefGoogle Scholar
  28. 28.
    Ballarin, B., Gazzano, M., Scavetta, E., and Tonelli, D., One-step electrosynthesis of bimetallic Au–Pt nanoparticles on indium tin oxide electrodes: effect of the deposition parameters, J. Phys. Chem. C, 2009, vol. 113, p. 15148.CrossRefGoogle Scholar
  29. 29.
    Liu, J., Cao, L., Huang, W., and Li, Z., Preparation of AuPt alloy foam films and their superior electrocatalytic activity for the oxidation of formic acid, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 3552.CrossRefGoogle Scholar
  30. 30.
    Yamauchi, Y., Tonegawa, A., Komatsu, M., Wang, H., Wang, L., Nemoto, Y., Suzuki, N., and Kuroda, K., Electrochemical synthesis of mesoporous Pt–Au binary alloys with tunable compositions for enhancement of electrochemical performance, J. Am. Chem. Soc., 2012, vol. 134, p. 5100.CrossRefGoogle Scholar
  31. 31.
    Vanýsek, P., Electrochemical Series, in CRC Handbook of Chemistry and Physics, 87th ed., Lide, D.R., Ed., Boca Raton, FL: Taylor and Francis, 2007.Google Scholar
  32. 32.
    Yin, J., Fang, B., Luo, J., Wanjala, B., Mott, D., Loukrakpam, R., Ng, M.S., Li, Z., Hong, J., Whittingham, M.S., and Zhong, C.J., Nanoscale alloying effect of gold–platinum nanoparticles as cathode catalysts on the performance of a rechargeable lithium–oxygen battery, Nanotechnology, 2012, vol. 23, p. 305404.CrossRefGoogle Scholar
  33. 33.
    Zhang, S., Shao,Y., Yin, G., and Lin, Y., Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation, J. Power Sources, 2010, vol. 195, p. 1103.Google Scholar
  34. 34.
    Lee, J.K., Lee, J., Han, J., Lim, T.-H., Sung, Y.-E., and Tak, Y., Influence of Au contents of AuPt anode catalyst on the performance of direct formic acid fuel cell, Electrochim. Acta, 2008, vol. 53, p. 3474.CrossRefGoogle Scholar
  35. 35.
    Jana, N.R., Gearheart, L., and Murphy, C.J., Seedmediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater., 2001, vol. 13, p. 1389.CrossRefGoogle Scholar
  36. 36.
    Cabello, G., Davoglio, R.A., Hartl, F.W., Marco, J.F., Pereira, E.C., Biaggio, S.R., Varela, H., and Cuesta, A., Microwave-assisted synthesis of Pt–Au nanoparticles with enhanced electrocatalytic activity for the oxidation of formic acid, Electrochim. Acta, 2017, vol. 224, p. 56.CrossRefGoogle Scholar
  37. 37.
    Ponec, V. and Bond, G.C., Catalysis by Metals and Alloys, Amsterdam: Elsevier, 1995.Google Scholar
  38. 38.
    Luo, J., Maye, M.M., Petkov, V., Kariuki, N.N., Wang, L.Y., Njoki, P., Mott, D., Lin, Y., and Zhong, C.J., Phase properties of carbon-supported gold-platinum nanoparticles with different bimetallic compositions, Chem. Mater., 2005, vol. 17, p. 3086.CrossRefGoogle Scholar
  39. 39.
    Vidaliglesias, F.J., Aránais, R.M., Sollagullón, J., Herrero, E., and Feliu, J.M., Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes, ACS Catal., 2012, vol. 2, p. 901.CrossRefGoogle Scholar
  40. 40.
    Hu, J., Li, H., Gan, Q.-M., and Li, Y.-J., Threedimensional porous Au nanocoral structure decorated with Pt submonolayer via galvanic displacement of copper adatoms for electrooxidation of formic acid, Russ. J. Electrochem., 2016, vol. 52, p. 355.CrossRefGoogle Scholar
  41. 41.
    Kim, Y., Kim, H.J., Kim, Y.S., Choi, S.M., Seo, M.H., and Kim, W.B., Shape-and composition-sensitive activity of Pt and PtAu catalysts for formic acid electrooxidation, J. Phys. Chem. C, 2012, vol. 116, p. 18093.Google Scholar
  42. 42.
    Zhang, S., Shao, Y., Liao, H.-G., Liu, J., Aksay, I.A., Yin, G., and Lin, Y., Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation, Chem. Mater., 2011, vol. 23, p. 1079.CrossRefGoogle Scholar
  43. 43.
    Peng, Z. and Yang, H., PtAu bimetallic heteronanostructures made by post-synthesis modification of Pton-Au nanoparticles, Nano Res., 2009, vol. 2, p. 406.CrossRefGoogle Scholar
  44. 44.
    Bus, E. and van-Bokhoven, J.A., Electronic and geometric structures of supported platinum, gold, and platinum−gold catalysts, J. Phys. Chem. C, 2007, vol. 111, p. 9761.CrossRefGoogle Scholar
  45. 45.
    Kumar, S.S. and Phani, K.L.N., Exploration of unalloyed bimetallic Au–Pt/C nanoparticles for oxygen reduction reaction, J. Power Sources, 2009, vol. 187, p. 19.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Wen-Jin Shen
    • 1
  • Ji-Long Sang
    • 1
  • Ling Cai
    • 1
  • Yong-Jun Li
    • 1
    Email author
  1. 1.State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina

Personalised recommendations